| Overall Statistics |
|
Total Orders 533 Average Win 0.19% Average Loss -0.18% Compounding Annual Return -0.183% Drawdown 5.200% Expectancy -0.009 Start Equity 100000 End Equity 99634.34 Net Profit -0.366% Sharpe Ratio -0.968 Sortino Ratio -0.844 Probabilistic Sharpe Ratio 4.100% Loss Rate 52% Win Rate 48% Profit-Loss Ratio 1.04 Alpha -0.03 Beta -0.002 Annual Standard Deviation 0.031 Annual Variance 0.001 Information Ratio -0.134 Tracking Error 0.166 Treynor Ratio 12.204 Total Fees $586.05 Estimated Strategy Capacity $9600000.00 Lowest Capacity Asset PLTR XIAKBH8EIMHX Portfolio Turnover 3.44% |
from AlgorithmImports import *
from QuantConnect.DataSource import *
class ExtractAlphaTacticalModelAlgorithm(QCAlgorithm):
def initialize(self) -> None:
self.set_start_date(2021, 10, 10)
self.set_end_date(2023, 10, 10)
self.set_cash(100000)
self.last_time = datetime.min
self.add_universe(self.my_coarse_filter_function)
self.universe_settings.resolution = Resolution.MINUTE
def my_coarse_filter_function(self, coarse: List[CoarseFundamental]) -> List[Symbol]:
sorted_by_dollar_volume = sorted([x for x in coarse if x.has_fundamental_data and x.price > 4],
key=lambda x: x.dollar_volume, reverse=True)
selected = [x.symbol for x in sorted_by_dollar_volume[:100]]
return selected
def on_data(self, slice: Slice) -> None:
if self.last_time > self.time: return
# Accessing Data
points = slice.Get(ExtractAlphaTacticalModel)
sorted_by_score = sorted([x for x in points.items() if x[1].score], key=lambda x: x[1].score)
long_symbols = [x[0].underlying for x in sorted_by_score[-10:]]
short_symbols = [x[0].underlying for x in sorted_by_score[:10]]
for symbol in [x.symbol for x in self.portfolio.Values if x.invested]:
if symbol not in long_symbols + short_symbols:
self.liquidate(symbol)
long_targets = [PortfolioTarget(symbol, 0.05) for symbol in long_symbols]
short_targets = [PortfolioTarget(symbol, -0.05) for symbol in short_symbols]
self.set_holdings(long_targets + short_targets)
self.last_time = Expiry.END_OF_DAY(self.time)
def on_securities_changed(self, changes: SecurityChanges) -> None:
for security in changes.added_securities:
# Requesting Data
extract_alpha_tactical_model_symbol = self.add_data(ExtractAlphaTacticalModel, security.symbol).symbol
# Historical Data
history = self.history(extract_alpha_tactical_model_symbol, 60, Resolution.DAILY)
self.debug(f"We got {len(history)} items from our history request")