| Overall Statistics |
|
Total Trades 4118 Average Win 0.00% Average Loss 0.00% Compounding Annual Return -0.050% Drawdown 0.500% Expectancy -0.078 Net Profit -0.453% Sharpe Ratio -0.158 Probabilistic Sharpe Ratio 0.001% Loss Rate 69% Win Rate 31% Profit-Loss Ratio 1.96 Alpha -0 Beta 0.001 Annual Standard Deviation 0.002 Annual Variance 0 Information Ratio -0.589 Tracking Error 0.149 Treynor Ratio -0.325 Total Fees $4693.25 Estimated Strategy Capacity $1200000.00 Lowest Capacity Asset SCHO UOVIOSUIT3DX |
#region imports
from AlgorithmImports import *
from arch.unitroot.cointegration import engle_granger
from pykalman import KalmanFilter
#endregion
class PCADemo(QCAlgorithm):
def Initialize(self):
#1. Required: Five years of backtest history
self.SetStartDate(2014, 1, 1)
#2. Required: Alpha Streams Models:
self.SetBrokerageModel(BrokerageName.AlphaStreams)
#3. Required: Significant AUM Capacity
self.SetCash(1000000)
#4. Required: Benchmark to SPY
self.SetBenchmark("SPY")
self.assets = ["SCHO", "SHY"]
# Add Equity ------------------------------------------------
for i in range(len(self.assets)):
self.AddEquity(self.assets[i], Resolution.Minute)
# Instantiate our model
self.Recalibrate()
# Set a variable to indicate the trading bias of the portfolio
self.state = 0
# Set Scheduled Event Method For Kalman Filter updating.
self.Schedule.On(self.DateRules.WeekStart(),
self.TimeRules.At(0, 0),
self.Recalibrate)
# Set Scheduled Event Method For Kalman Filter updating.
self.Schedule.On(self.DateRules.EveryDay(),
self.TimeRules.BeforeMarketClose("SHY"),
self.EveryDayBeforeMarketClose)
def Recalibrate(self):
qb = self
history = qb.History(self.assets, 252*2, Resolution.Daily)
if history.empty: return
# Select the close column and then call the unstack method
data = history['close'].unstack(level=0)
# Convert into log-price series to eliminate compounding effect
log_price = np.log(data)
### Get Cointegration Vectors
# Get the cointegration vector
coint_result = engle_granger(log_price.iloc[:, 0], log_price.iloc[:, 1], trend="c", lags=0)
coint_vector = coint_result.cointegrating_vector[:2]
# Get the spread
spread = log_price @ coint_vector
### Kalman Filter
# Initialize a Kalman Filter. Using the first 20 data points to optimize its initial state. We assume the market has no regime change so that the transitional matrix and observation matrix is [1].
self.kalmanFilter = KalmanFilter(transition_matrices = [1],
observation_matrices = [1],
initial_state_mean = spread.iloc[:20].mean(),
observation_covariance = spread.iloc[:20].var(),
em_vars=['transition_covariance', 'initial_state_covariance'])
self.kalmanFilter = self.kalmanFilter.em(spread.iloc[:20], n_iter=5)
(filtered_state_means, filtered_state_covariances) = self.kalmanFilter.filter(spread.iloc[:20])
# Obtain the current Mean and Covariance Matrix expectations.
self.currentMean = filtered_state_means[-1, :]
self.currentCov = filtered_state_covariances[-1, :]
# Initialize a mean series for spread normalization using the Kalman Filter's results.
mean_series = np.array([None]*(spread.shape[0]-20))
# Roll over the Kalman Filter to obtain the mean series.
for i in range(20, spread.shape[0]):
(self.currentMean, self.currentCov) = self.kalmanFilter.filter_update(filtered_state_mean = self.currentMean,
filtered_state_covariance = self.currentCov,
observation = spread.iloc[i])
mean_series[i-20] = float(self.currentMean)
# Obtain the normalized spread series.
normalized_spread = (spread.iloc[20:] - mean_series)
### Determine Trading Threshold
# Initialize 50 set levels for testing.
s0 = np.linspace(0, max(normalized_spread), 50)
# Calculate the profit levels using the 50 set levels.
f_bar = np.array([None]*50)
for i in range(50):
f_bar[i] = len(normalized_spread.values[normalized_spread.values > s0[i]]) \
/ normalized_spread.shape[0]
# Set trading frequency matrix.
D = np.zeros((49, 50))
for i in range(D.shape[0]):
D[i, i] = 1
D[i, i+1] = -1
# Set level of lambda.
l = 1.0
# Obtain the normalized profit level.
f_star = np.linalg.inv(np.eye(50) + l * D.T@D) @ f_bar.reshape(-1, 1)
s_star = [f_star[i]*s0[i] for i in range(50)]
self.threshold = s0[s_star.index(max(s_star))]
# Set the trading weight. We would like the portfolio absolute total weight is 1 when trading.
self.trading_weight = coint_vector / np.sum(abs(coint_vector))
def EveryDayBeforeMarketClose(self):
qb = self
# Get the real-time log close price for all assets and store in a Series
series = pd.Series()
for symbol in qb.Securities.Keys:
series[symbol] = np.log(qb.Securities[symbol].Close)
# Get the spread
spread = np.sum(series * self.trading_weight)
# Update the Kalman Filter with the Series
(self.currentMean, self.currentCov) = self.kalmanFilter.filter_update(filtered_state_mean = self.currentMean,
filtered_state_covariance = self.currentCov,
observation = spread)
# Obtain the normalized spread.
normalized_spread = spread - self.currentMean
# ==============================
# Mean-reversion
if normalized_spread < -self.threshold:
orders = []
for i in range(len(self.assets)):
orders.append(PortfolioTarget(self.assets[i], self.trading_weight[i]))
self.SetHoldings(orders)
self.state = 1
elif normalized_spread > self.threshold:
orders = []
for i in range(len(self.assets)):
orders.append(PortfolioTarget(self.assets[i], -1 * self.trading_weight[i]))
self.SetHoldings(orders)
self.state = -1
# Out of position if spread recovered
elif self.state == 1 and normalized_spread > -self.threshold or self.state == -1 and normalized_spread < self.threshold:
self.Liquidate()
self.state = 0