Overall Statistics
Total Trades
4118
Average Win
0.00%
Average Loss
0.00%
Compounding Annual Return
-0.050%
Drawdown
0.500%
Expectancy
-0.078
Net Profit
-0.453%
Sharpe Ratio
-0.158
Probabilistic Sharpe Ratio
0.001%
Loss Rate
69%
Win Rate
31%
Profit-Loss Ratio
1.96
Alpha
-0
Beta
0.001
Annual Standard Deviation
0.002
Annual Variance
0
Information Ratio
-0.589
Tracking Error
0.149
Treynor Ratio
-0.325
Total Fees
$4693.25
Estimated Strategy Capacity
$1200000.00
Lowest Capacity Asset
SCHO UOVIOSUIT3DX
#region imports
from AlgorithmImports import *
from arch.unitroot.cointegration import engle_granger
from pykalman import KalmanFilter
#endregion

class PCADemo(QCAlgorithm):
    
    def Initialize(self):

        #1. Required: Five years of backtest history
        self.SetStartDate(2014, 1, 1)
    
        #2. Required: Alpha Streams Models:
        self.SetBrokerageModel(BrokerageName.AlphaStreams)
    
        #3. Required: Significant AUM Capacity
        self.SetCash(1000000)
    
        #4. Required: Benchmark to SPY
        self.SetBenchmark("SPY")
    
        self.assets = ["SCHO", "SHY"]
        
        # Add Equity ------------------------------------------------ 
        for i in range(len(self.assets)):
            self.AddEquity(self.assets[i], Resolution.Minute)
            
        # Instantiate our model
        self.Recalibrate()
        
        # Set a variable to indicate the trading bias of the portfolio
        self.state = 0
        
        # Set Scheduled Event Method For Kalman Filter updating.
        self.Schedule.On(self.DateRules.WeekStart(), 
            self.TimeRules.At(0, 0), 
            self.Recalibrate)
        
        # Set Scheduled Event Method For Kalman Filter updating.
        self.Schedule.On(self.DateRules.EveryDay(), 
            self.TimeRules.BeforeMarketClose("SHY"), 
            self.EveryDayBeforeMarketClose)
            
            
    def Recalibrate(self):
        qb = self
        history = qb.History(self.assets, 252*2, Resolution.Daily)
        if history.empty: return
        
        # Select the close column and then call the unstack method
        data = history['close'].unstack(level=0)
        
        # Convert into log-price series to eliminate compounding effect
        log_price = np.log(data)
        
        ### Get Cointegration Vectors
        # Get the cointegration vector
        coint_result = engle_granger(log_price.iloc[:, 0], log_price.iloc[:, 1], trend="c", lags=0)
        coint_vector = coint_result.cointegrating_vector[:2]
        
        # Get the spread
        spread = log_price @ coint_vector
        
        ### Kalman Filter
        # Initialize a Kalman Filter. Using the first 20 data points to optimize its initial state. We assume the market has no regime change so that the transitional matrix and observation matrix is [1].
        self.kalmanFilter = KalmanFilter(transition_matrices = [1],
                          observation_matrices = [1],
                          initial_state_mean = spread.iloc[:20].mean(),
                          observation_covariance = spread.iloc[:20].var(),
                          em_vars=['transition_covariance', 'initial_state_covariance'])
        self.kalmanFilter = self.kalmanFilter.em(spread.iloc[:20], n_iter=5)
        (filtered_state_means, filtered_state_covariances) = self.kalmanFilter.filter(spread.iloc[:20])
        
        # Obtain the current Mean and Covariance Matrix expectations.
        self.currentMean = filtered_state_means[-1, :]
        self.currentCov = filtered_state_covariances[-1, :]
        
        # Initialize a mean series for spread normalization using the Kalman Filter's results.
        mean_series = np.array([None]*(spread.shape[0]-20))
        
        # Roll over the Kalman Filter to obtain the mean series.
        for i in range(20, spread.shape[0]):
            (self.currentMean, self.currentCov) = self.kalmanFilter.filter_update(filtered_state_mean = self.currentMean,
                                                                   filtered_state_covariance = self.currentCov,
                                                                   observation = spread.iloc[i])
            mean_series[i-20] = float(self.currentMean)
        
        # Obtain the normalized spread series.
        normalized_spread = (spread.iloc[20:] - mean_series)
        
        ### Determine Trading Threshold
        # Initialize 50 set levels for testing.
        s0 = np.linspace(0, max(normalized_spread), 50)
        
        # Calculate the profit levels using the 50 set levels.
        f_bar = np.array([None]*50)
        for i in range(50):
            f_bar[i] = len(normalized_spread.values[normalized_spread.values > s0[i]]) \
              / normalized_spread.shape[0]
            
        # Set trading frequency matrix.
        D = np.zeros((49, 50))
        for i in range(D.shape[0]):
            D[i, i] = 1
            D[i, i+1] = -1
            
        # Set level of lambda.
        l = 1.0
        
        # Obtain the normalized profit level.
        f_star = np.linalg.inv(np.eye(50) + l * D.T@D) @ f_bar.reshape(-1, 1)
        s_star = [f_star[i]*s0[i] for i in range(50)]
        self.threshold = s0[s_star.index(max(s_star))]
        
        # Set the trading weight. We would like the portfolio absolute total weight is 1 when trading.
        self.trading_weight = coint_vector / np.sum(abs(coint_vector))
        
            
    def EveryDayBeforeMarketClose(self):
        qb = self
        
        # Get the real-time log close price for all assets and store in a Series
        series = pd.Series()
        for symbol in qb.Securities.Keys:
            series[symbol] = np.log(qb.Securities[symbol].Close)
            
        # Get the spread
        spread = np.sum(series * self.trading_weight)
        
        # Update the Kalman Filter with the Series
        (self.currentMean, self.currentCov) = self.kalmanFilter.filter_update(filtered_state_mean = self.currentMean,
                                                                           filtered_state_covariance = self.currentCov,
                                                                           observation = spread)
            
        # Obtain the normalized spread.
        normalized_spread = spread - self.currentMean
    
        # ==============================
        
        # Mean-reversion
        if normalized_spread < -self.threshold:
            orders = []
            for i in range(len(self.assets)):
                orders.append(PortfolioTarget(self.assets[i], self.trading_weight[i]))
                self.SetHoldings(orders)
                
            self.state = 1
                
        elif normalized_spread > self.threshold:
            orders = []
            for i in range(len(self.assets)):
                orders.append(PortfolioTarget(self.assets[i], -1 * self.trading_weight[i]))
                self.SetHoldings(orders)
                
            self.state = -1
                
        # Out of position if spread recovered
        elif self.state == 1 and normalized_spread > -self.threshold or self.state == -1 and normalized_spread < self.threshold:
            self.Liquidate()
            
            self.state = 0