| Overall Statistics |
|
Total Trades 2 Average Win 0% Average Loss 0% Compounding Annual Return -6.961% Drawdown 0.700% Expectancy 0 Net Profit -0.604% Sharpe Ratio -6.134 Probabilistic Sharpe Ratio 0.144% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha -0.003 Beta -0.099 Annual Standard Deviation 0.008 Annual Variance 0 Information Ratio -8.215 Tracking Error 0.064 Treynor Ratio 0.507 Total Fees $2.00 Estimated Strategy Capacity $9100000.00 Lowest Capacity Asset GOOCV 30HNN7PDAXNLY|GOOCV VP83T1ZUHROL |
from AlgorithmImports import *
class BearPutSpreadStrategy(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2017, 2, 1)
self.SetEndDate(2017, 3, 5)
self.SetCash(500000)
option = self.AddOption("GOOG", Resolution.Minute)
self.symbol = option.Symbol
option.SetFilter(self.UniverseFunc)
def UniverseFunc(self, universe):
return universe.IncludeWeeklys().Strikes(-15, 15).Expiration(timedelta(0), timedelta(31))
def OnData(self, slice):
if self.Portfolio.Invested: return
# Get the OptionChain
chain = slice.OptionChains.get(self.symbol, None)
if not chain: return
# Get the furthest expiry date of the contracts
expiry = sorted(chain, key = lambda x: x.Expiry, reverse=True)[0].Expiry
# Select the put Option contracts with the furthest expiry
puts = [i for i in chain if i.Expiry == expiry and i.Right == OptionRight.Put]
if len(puts) == 0: return
# Select the ITM and OTM contract strike prices from the remaining contracts
put_strikes = sorted([x.Strike for x in puts])
otm_strike = put_strikes[0]
itm_strike = put_strikes[-1]
option_strategy = OptionStrategies.BearPutSpread(self.symbol, itm_strike, otm_strike, expiry)
self.Buy(option_strategy, 1)