| Overall Statistics |
|
Total Trades 0 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio -0.208 Tracking Error 0.158 Treynor Ratio 0 Total Fees $0.00 Estimated Strategy Capacity $0 Lowest Capacity Asset |
"""
ML Technical Algorithm for SPY with random signal generator and Kelly sizing
@email: info@beawai.com
@creation date: 25/11/2022
"""
from AlgorithmImports import *
import sklearn
import numpy as np
import pandas as pd
pd.set_option('mode.use_inf_as_na', True)
from sklearn.dummy import DummyClassifier
from sklearn.model_selection import train_test_split
class E2E(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2021, 1, 1)
self.SetEndDate(2022, 11, 1)
self.lookback = self.GetParameter("lookback", 21)
self.resolution = Resolution.Daily
self.ticker = ["QQQ", "BAC"]
self.symbolDataBySymbol = {}
self.model = None
self.kelly_size = 0
self.spy = self.AddEquity("SPY", Resolution.Hour).Symbol
for symbol in self.ticker:
self.AddEquity(symbol, Resolution.Hour).Symbol
ema7 = self.EMA(symbol, 7, Resolution.Daily, Field.Close)
sma20 = self.SMA(symbol, 20, Resolution.Daily, Field.Close)
symbolData = SymbolData(symbol, ema7, sma20)
self.symbolDataBySymbol[symbol] = symbolData
every_day = self.DateRules.EveryDay(self.spy)
self.Train(every_day, self.TimeRules.At(0, 0), self.trainkelly)
self.Schedule.On(every_day,
self.TimeRules.AfterMarketOpen(self.spy, 0),
self.trade)
def trainkelly(self):
""" Train model and calculate kelly position daily """
if self.model is None: self.model = DummyClassifier(strategy="uniform") # Random binary generator
features, returns = self.get_data(252) # Use last year of data for training
target = returns >= 0 # Up/Down binary target
model_temp = sklearn.base.clone(self.model)
x_train, x_test, y_train, y_test, r_train, r_test = \
train_test_split(features, target, returns, train_size=0.5, shuffle=False)
model_temp.fit(x_train, y_train)
y_pred = model_temp.predict(x_test)
self.kelly_size = kelly_size(y_test, y_pred, r_test) # Calculate kelly position on test data
self.kelly_size = np.clip(self.kelly_size, 0, 1) # Applies fractional kelly and clips between 0 and 1
self.model.fit(features, target)
self.Debug(f"{self.Time} Training - Kelly: {self.kelly_size:.1%}\n")
self.Plot("ML", "Score", self.kelly_size)
def trade(self):
""" Trades based on prediction at market open """
if self.model is None: return # Don't trade until the model is trained
self.Transactions.CancelOpenOrders()
x_pred = self.get_data(self.lookback, include_y=False)
if len(x_pred) == 0: return
y_pred = self.model.predict(x_pred)[0]
position = y_pred * self.kelly_size # Sizing based on Kelly and individual probabilty
self.Plot("ML", "Prediction", y_pred.mean())
self.Debug(f"{self.Time} Trading\tPos: {position:.1%}")
for symbol, symbolData in self.symbolDataBySymbol.items():
if self.Portfolio[symbol].Invested and (self.Securities[symbol].Close > symbolData.sma20.Current.Value):
self.SetHoldings(symbol, .1, False, "Buy Signal")
def get_data(self, datapoints, include_y=True):
for symbol, symbolData in self.symbolDataBySymbol.items():
""" Calculate features and target data """
data = self.History([symbol], datapoints, self.resolution)
features = data.eval("close/open - 1").to_frame("returns")
x = pd.concat([features.shift(s) for s in range(self.lookback)],
axis=1).dropna() # Sequence of last "lookback" returns
if include_y:
y = features["returns"].shift(-1).reindex_like(x).dropna()
return x.loc[y.index], y
else:
return x
def kelly_size(y_true, y_pred, returns):
""" Calculate Kelly position based on the prediction accuracy """
trades = y_pred!=0
wins = y_true[trades]==y_pred[trades]
win_rate = wins.mean()
loss_rate = 1-win_rate
avg_win = abs(returns[trades][wins].mean())
avg_loss = abs(returns[trades][~wins].mean())
return win_rate/avg_loss - loss_rate/avg_win
class SymbolData:
def __init__(self, symbol, ema7, sma20):
self.Symbol = symbol
self.ema7 = ema7
self.sma20 = sma20