| Overall Statistics |
|
Total Trades 3 Average Win 0% Average Loss 0% Compounding Annual Return 0% Drawdown 0% Expectancy 0 Net Profit 0% Sharpe Ratio 0 Probabilistic Sharpe Ratio 0% Loss Rate 0% Win Rate 0% Profit-Loss Ratio 0 Alpha 0 Beta 0 Annual Standard Deviation 0 Annual Variance 0 Information Ratio 0 Tracking Error 0 Treynor Ratio 0 Total Fees $3.00 Estimated Strategy Capacity $2000000.00 Lowest Capacity Asset QQQ RIWIV7K5Z9LX |
# Import packages
import numpy as np
import pandas as pd
import scipy as sc
from QuantConnect.Python import PythonQuandl
# ------------------------------------------------------------------
STK = ['QQQ']; BND = ['TLT']; VOLA = 126; BASE_RET = 85; LEV = 1.00;
PAIRS = ['SLV', 'GLD', 'XLI', 'XLU', 'DBB', 'UUP']
# ------------------------------------------------------------------
class InOut(QCAlgorithm):
def Initialize(self):
self.quandlCode = "OECD/KEI_LOLITOAA_OECDE_ST_M"
## Optional argument - personal token necessary for restricted dataset
#Quandl.SetAuthCode("PrzwuZR28Wqegvv1sdJ7")
self.SetStartDate(2020, 1, 1)
self.SetEndDate(2021, 1, 1)
self.SetCash(25000) # Set Strategy Cash
self.cap = 12500
self.UniverseSettings.Resolution = Resolution.Daily
res = Resolution.Minute
# Holdings
### 'Out' holdings and weights
self.BND1 = self.AddEquity('TLT', res).Symbol #TLT; TMF for 3xlev
self.BND2 = self.AddEquity('IEF', res).Symbol #IEF; TYD for 3xlev
self.HLD_OUT = {self.BND1: .5, self.BND2: .5}
### 'In' holdings and weights (static stock selection strategy)
self.STKS = self.AddEquity('QQQ', res).Symbol #SPY or QQQ; TQQQ for 3xlev
self.HLD_IN = {self.STKS: 1}
# Market and list of signals based on ETFs
self.MRKT = self.AddEquity('SPY', res).Symbol # market
self.GOLD = self.AddEquity('GLD', res).Symbol # gold
self.SLVA = self.AddEquity('SLV', res).Symbol # vs silver
self.UTIL = self.AddEquity('XLU', res).Symbol # utilities
self.INDU = self.AddEquity('XLI', res).Symbol # vs industrials
self.METL = self.AddEquity('DBB', res).Symbol # input prices (metals)
self.USDX = self.AddEquity('UUP', res).Symbol # safe haven (USD)
self.FORPAIRS = [self.GOLD, self.SLVA, self.UTIL, self.INDU, self.METL, self.USDX]
# set a warm-up period to initialize the indicators
self.SetWarmUp(timedelta(350))
# Specific variables
self.DISTILLED_BEAR = 999
self.BE_IN = 999
self.VOLA_LOOKBACK = 126
self.WAITD_CONSTANT = 85
self.DCOUNT = 1 # count of total days since start
self.OUTDAY = 1 # dcount when self.be_in=0
self.Schedule.On(
self.DateRules.EveryDay(),
self.TimeRules.AfterMarketOpen('SPY', 120),
self.BearRebalance
)
# Setup daily consolidation
symbols = [self.MRKT] + self.FORPAIRS
for symbol in symbols:
self.consolidator = TradeBarConsolidator(timedelta(days=1))
self.consolidator.DataConsolidated += self.consolidation_handler
self.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
# Warm up history
self.history = self.History(symbols, self.VOLA_LOOKBACK+1, Resolution.Daily)
if self.history.empty or 'close' not in self.history.columns:
return
self.history = self.history['close'].unstack(level=0).dropna()
self.derive_vola_waitdays()
### kei
#self.SetWarmup(100)
self.SetBenchmark("SPY")
self.init = True
self.kei = self.AddData(QuandlCustomColumns, self.quandlCode, Resolution.Daily, TimeZones.NewYork).Symbol
self.sma = self.SMA(self.kei, 1)
self.mom = self.MOMP(self.kei, 2)
#self.SPY = self.AddEquity('SPY', Resolution.Daily).Symbol
self.stock = self.AddEquity('QQQ', Resolution.Hour).Symbol
self.bond = self.AddEquity('TLT', Resolution.Hour).Symbol
self.STK = self.AddEquity('QQQ', Resolution.Minute).Symbol
self.BND = self.AddEquity('TLT', Resolution.Minute).Symbol
self.ASSETS = [self.STK, self.BND]
self.SLV = self.AddEquity('SLV', Resolution.Daily).Symbol
self.GLD = self.AddEquity('GLD', Resolution.Daily).Symbol
self.XLI = self.AddEquity('XLI', Resolution.Daily).Symbol
self.XLU = self.AddEquity('XLU', Resolution.Daily).Symbol
self.DBB = self.AddEquity('DBB', Resolution.Daily).Symbol
self.UUP = self.AddEquity('UUP', Resolution.Daily).Symbol
self.MKT = self.AddEquity('SPY', Resolution.Daily).Symbol
self.pairs = [self.SLV, self.GLD, self.XLI, self.XLU, self.DBB, self.UUP]
self.symbols = ['FAS', 'ERX', 'UYM', 'DUSL', 'WANT', 'UGE', 'UTSL', 'TECL', 'CURE', 'TENG', 'XLRE']
#Leverged 3x
# self.XLF = self.AddEquity('FAS', Resolution.Hour).Symbol
# self.XLE = self.AddEquity('ERX', Resolution.Hour).Symbol
# self.XLB = self.AddEquity('UYM', Resolution.Hour).Symbol
# self.XLI = self.AddEquity('DUSL', Resolution.Hour).Symbol
# self.XLY = self.AddEquity('WANT', Resolution.Hour).Symbol
# self.XLP = self.AddEquity('UGE', Resolution.Hour).Symbol
# self.XLU = self.AddEquity('UTSL', Resolution.Hour).Symbol
# self.XLK = self.AddEquity('TECL', Resolution.Hour).Symbol
# self.XLV = self.AddEquity('CURE', Resolution.Hour).Symbol
# self.XLC = self.AddEquity('TENG', Resolution.Hour).Symbol
# self.XLRE = self.AddEquity('XLRE', Resolution.Hour).Symbol
self.XLF = self.AddEquity('XLF', Resolution.Hour).Symbol
self.XLE = self.AddEquity('XLE', Resolution.Hour).Symbol
self.XLB = self.AddEquity('XLB', Resolution.Hour).Symbol
self.XLI = self.AddEquity('XLI', Resolution.Hour).Symbol
self.XLY = self.AddEquity('XLY', Resolution.Hour).Symbol
self.XLP = self.AddEquity('XLP', Resolution.Hour).Symbol
self.XLU = self.AddEquity('XLU', Resolution.Hour).Symbol
self.XLK = self.AddEquity('XLK', Resolution.Hour).Symbol
self.XLV = self.AddEquity('XLV', Resolution.Hour).Symbol
self.XLC = self.AddEquity('XLC', Resolution.Hour).Symbol
self.XLRE = self.AddEquity('XLRE', Resolution.Hour).Symbol
#self.Schedule.On(self.DateRules.WeekStart(self.stock), self.TimeRules.AfterMarketOpen(self.stock, 31),
# self.Rebalance)
self.bull = 1
self.count = 0
self.outday = 50
self.wt = {}
self.real_wt = {}
self.mkt = []
self.SetWarmUp(timedelta(350))
self.Schedule.On(self.DateRules.EveryDay(self.stock), self.TimeRules.AfterMarketOpen(self.stock, 1),
self.Rebalance)
self.Schedule.On(self.DateRules.EveryDay(), self.TimeRules.AfterMarketOpen('SPY', 100),
self.daily_check)
symbols = [self.MKT] + self.pairs
for symbol in symbols:
self.consolidator = TradeBarConsolidator(timedelta(days=1))
self.consolidator.DataConsolidated += self.consolidation_handler
self.SubscriptionManager.AddConsolidator(symbol, self.consolidator)
self.history = self.History(symbols, VOLA + 1, Resolution.Daily)
if self.history.empty or 'close' not in self.history.columns:
return
self.history = self.history['close'].unstack(level=0).dropna()
#self.AddRiskManagement(TrailingStopRiskManagementModel(0.05))
###
def consolidation_handler(self, sender, consolidated):
self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
self.history = self.history.iloc[-(VOLA + 1):]
def daily_check(self):
vola = self.history[[self.MKT]].pct_change().std() * np.sqrt(252)
wait_days = int(vola * BASE_RET)
period = int((1.0 - vola) * BASE_RET)
r = self.history.pct_change(period).iloc[-1]
exit = ((r[self.SLV] < r[self.GLD]) and (r[self.XLI] < r[self.XLU]) and (r[self.DBB] < r[self.UUP]))
if exit:
self.bull = False
self.outday = self.count
if self.count >= self.outday + wait_days:
self.bull = True
self.count += 1
if not self.bull:
for sec in self.ASSETS:
self.wt[sec] = LEV if sec is self.BND else 0
self.trade()
elif self.bull:
for sec in self.ASSETS:
self.wt[sec] = LEV if sec is self.STK else 0
self.trade()
def trade(self):
for sec, weight in self.wt.items():
if weight == 0 and self.Portfolio[sec].IsLong:
self.Liquidate(sec)
cond1 = weight == 0 and self.Portfolio[sec].IsLong
cond2 = weight > 0 and not self.Portfolio[sec].Invested
if cond1 or cond2:
self.SetHoldings(sec, weight)
def OnEndOfDay(self):
mkt_price = self.Securities[self.MKT].Close
self.mkt.append(mkt_price)
mkt_perf = self.mkt[-1] / self.mkt[0] * (self.cap * .5)
self.Plot('Strategy Equity', 'SPY', mkt_perf)
account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue
self.Plot('Holdings', 'leverage', round(account_leverage, 1))
for sec, weight in self.wt.items():
self.real_wt[sec] = round(self.ActiveSecurities[sec].Holdings.Quantity * self.Securities[sec].Price / self.Portfolio.TotalPortfolioValue,4)
self.Plot('Holdings', self.Securities[sec].Symbol, round(self.real_wt[sec], 3))
def Rebalance(self):
if self.IsWarmingUp or not self.mom.IsReady or not self.sma.IsReady: return
initial_asset = self.stock if self.mom.Current.Value > 0 else self.bond
if self.init:
self.SetHoldings(initial_asset, .01)
self.init = False
keihist = self.History([self.kei], 1400)
#keihist = keihist['Value'].unstack(level=0).dropna()
keihistlowt = np.nanpercentile(keihist, 15)
keihistmidt = np.nanpercentile(keihist, 50)
keihisthight = np.nanpercentile(keihist, 90)
kei = self.sma.Current.Value
keimom = self.mom.Current.Value
if (keimom < 0 and kei < keihistmidt and kei > keihistlowt) and not (self.Securities[self.XLP].Invested):
# DECLINE
self.Liquidate()
self.SetHoldings(self.XLP, .5)
self.SetHoldings(self.XLV, .5)
#self.SetHoldings(self.bond, 1)
self.Debug("STAPLES {0} >> {1}".format(self.XLP, self.Time))
elif (keimom > 0 and kei < keihistlowt) and not (self.Securities[self.XLB].Invested):
# RECOVERY
self.Liquidate()
self.SetHoldings(self.XLB, .5)
self.SetHoldings(self.XLY, .5)
self.Debug("MATERIALS {0} >> {1}".format(self.XLB, self.Time))
elif (keimom > 0 and kei > keihistlowt and kei < keihistmidt) and not (self.Securities[self.XLE].Invested):
# EARLY
self.Liquidate()
self.SetHoldings(self.XLE, .33)
self.SetHoldings(self.XLF, .33)
self.SetHoldings(self.XLI, .33)
self.Debug("ENERGY {0} >> {1}".format(self.XLE, self.Time))
elif (keimom > 0 and kei > keihistmidt and kei < keihisthight) and not (self.Securities[self.XLU].Invested):
# REBOUND
self.Liquidate()
self.SetHoldings(self.XLK, .5)
self.SetHoldings(self.XLU, .5)
self.Debug("UTILITIES {0} >> {1}".format(self.XLU, self.Time))
elif (keimom < 0 and kei < keihisthight and kei > keihistmidt) and not (self.Securities[self.XLK].Invested):
# LATE
self.Liquidate()
self.SetHoldings(self.XLK, .5)
self.SetHoldings(self.XLC, .5)
self.Debug("INFO TECH {0} >> {1}".format(self.XLK, self.Time))
elif (keimom < 0 and kei < 100 and not self.Securities[self.bond].Invested):
self.Liquidate()
self.SetHoldings(self.bond, 1)
self.Plot("LeadInd", "SMA(LeadInd)", self.sma.Current.Value)
self.Plot("LeadInd", "THRESHOLD", 100)
self.Plot("MOMP", "MOMP(LeadInd)", self.mom.Current.Value)
self.Plot("MOMP", "THRESHOLD", 0)
## BEAR
def consolidation_handler(self, sender, consolidated):
self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
self.history = self.history.iloc[-(self.VOLA_LOOKBACK+1):]
self.derive_vola_waitdays()
def derive_vola_waitdays(self):
volatility = np.log1p(self.history[[self.MRKT]].pct_change()).std() * np.sqrt(252)
wait_days = int(volatility * self.WAITD_CONSTANT)
returns_lookback = int((1.0 - volatility) * self.WAITD_CONSTANT)
return wait_days, returns_lookback
def BearRebalance(self):
wait_days, returns_lookback = self.derive_vola_waitdays()
## Check for Bear
returns = self.history.pct_change(returns_lookback).iloc[-1]
silver_returns = returns[self.SLVA]
gold_returns = returns[self.GOLD]
industrials_returns = returns[self.INDU]
utilities_returns = returns[self.UTIL]
metals_returns = returns[self.METL]
dollar_returns = returns[self.USDX]
self.DISTILLED_BEAR = (((gold_returns > silver_returns) and
(utilities_returns > industrials_returns)) and
(metals_returns < dollar_returns)
)
# Determine whether 'in' or 'out' of the market
if self.DISTILLED_BEAR:
self.BE_IN = False
self.OUTDAY = self.DCOUNT
if self.DCOUNT >= self.OUTDAY + wait_days:
self.BE_IN = True
self.DCOUNT += 1
# Determine holdings
if not self.BE_IN:
# Only trade when changing from in to out
self.trade({**dict.fromkeys(self.HLD_IN, 0), **self.HLD_OUT})
elif self.BE_IN:
# Only trade when changing from out to in
self.trade({**self.HLD_IN, **dict.fromkeys(self.HLD_OUT, 0)})
def trade(self, weight_by_sec):
buys = []
for sec, weight in weight_by_sec.items():
# Check that we have data in the algorithm to process a trade
if not self.CurrentSlice.ContainsKey(sec) or self.CurrentSlice[sec] is None:
continue
cond1 = weight == 0 and self.Portfolio[sec].IsLong
cond2 = weight > 0 and not self.Portfolio[sec].Invested
if cond1 or cond2:
quantity = self.CalculateOrderQuantity(sec, weight)
if quantity > 0:
buys.append((sec, quantity))
elif quantity < 0:
self.Order(sec, quantity)
for sec, quantity in buys:
self.Order(sec, quantity)
def charting(self, weight_inout_vs_dbear, weighted_be_in):
if self.dcount==1: self.benchmarks = [self.history[self.MRKT].iloc[-2], self.Portfolio.TotalPortfolioValue, self.history[self.QQQ].iloc[-2]]
# reset portfolio value and qqq benchmark annually
if self.Time.year!=self.year: self.benchmarks = [self.benchmarks[0], self.Portfolio.TotalPortfolioValue, self.history[self.QQQ].iloc[-2]]
self.year = self.Time.year
# SPY benchmark for main chart
spy_perf = self.history[self.MRKT].iloc[-1] / self.benchmarks[0] * self.cap
self.Plot('Strategy Equity', 'SPY', spy_perf)
# Leverage gauge: cash level
self.Plot('Cash level', 'cash', round(self.Portfolio.Cash+self.Portfolio.UnsettledCash, 0))
# Annual saw tooth return comparison: Portfolio VS QQQ
saw_portfolio_return = self.Portfolio.TotalPortfolioValue / self.benchmarks[1] - 1
saw_qqq_return = self.history[self.QQQ].iloc[-1] / self.benchmarks[2] - 1
self.Plot('Annual Saw Tooth Returns: Portfolio VS QQQ', 'Annual portfolio return', round(saw_portfolio_return, 4))
self.Plot('Annual Saw Tooth Returns: Portfolio VS QQQ', 'Annual QQQ return', round(float(saw_qqq_return), 4))
### IN/Out indicator and wait days
self.Plot("In Out", "inout", int(self.be_in_inout))
self.Plot("In Out", "dbear", int(self.be_in_dbear))
self.Plot("In Out", "rel_w_inout", float(weight_inout_vs_dbear))
self.Plot("In Out", "pct_in_market", float(weighted_be_in))
self.Plot("Wait Days", "waitdays", self.waitdays_inout)
def consolidation_handler(self, sender, consolidated):
self.history.loc[consolidated.EndTime, consolidated.Symbol] = consolidated.Close
self.history = self.history.iloc[-(VOLA + 1):]
def daily_check(self):
vola = self.history[[self.MKT]].pct_change().std() * np.sqrt(252)
wait_days = int(vola * BASE_RET)
period = int((1.0 - vola) * BASE_RET)
r = self.history.pct_change(period).iloc[-1]
exit = ((r[self.SLV] < r[self.GLD]) and (r[self.XLI] < r[self.XLU]) and (r[self.DBB] < r[self.UUP]))
if exit:
self.bull = False
self.outday = self.count
if self.count >= self.outday + wait_days:
self.bull = True
self.count += 1
if not self.bull:
for sec in self.ASSETS:
self.wt[sec] = LEV if sec is self.BND else 0
self.trade()
elif self.bull:
for sec in self.ASSETS:
self.wt[sec] = LEV if sec is self.STK else 0
self.trade()
def trade(self):
for sec, weight in self.wt.items():
if weight == 0 and self.Portfolio[sec].IsLong:
self.Liquidate(sec)
cond1 = weight == 0 and self.Portfolio[sec].IsLong
cond2 = weight > 0 and not self.Portfolio[sec].Invested
if cond1 or cond2:
self.SetHoldings(sec, weight)
def OnEndOfDay(self):
mkt_price = self.Securities[self.MKT].Close
self.mkt.append(mkt_price)
mkt_perf = self.mkt[-1] / self.mkt[0] * (self.cap * .5)
self.Plot('Strategy Equity', 'SPY', mkt_perf)
account_leverage = self.Portfolio.TotalHoldingsValue / self.Portfolio.TotalPortfolioValue
self.Plot('Holdings', 'leverage', round(account_leverage, 1))
for sec, weight in self.wt.items():
self.real_wt[sec] = round(self.ActiveSecurities[sec].Holdings.Quantity * self.Securities[sec].Price / self.Portfolio.TotalPortfolioValue,4)
self.Plot('Holdings', self.Securities[sec].Symbol, round(self.real_wt[sec], 3))
def Rebalance(self):
if self.IsWarmingUp or not self.mom.IsReady or not self.sma.IsReady: return
initial_asset = self.stock if self.mom.Current.Value > 0 else self.bond
if self.init:
self.SetHoldings(initial_asset, .01)
self.init = False
keihist = self.History([self.kei], 1400)
#keihist = keihist['Value'].unstack(level=0).dropna()
keihistlowt = np.nanpercentile(keihist, 15)
keihistmidt = np.nanpercentile(keihist, 50)
keihisthight = np.nanpercentile(keihist, 90)
kei = self.sma.Current.Value
keimom = self.mom.Current.Value
if (keimom < 0 and kei < keihistmidt and kei > keihistlowt) and not (self.Securities[self.XLP].Invested):
# DECLINE
self.Liquidate()
self.SetHoldings(self.XLP, .5)
self.SetHoldings(self.XLV, .5)
#self.SetHoldings(self.bond, 1)
self.Debug("STAPLES {0} >> {1}".format(self.XLP, self.Time))
elif (keimom > 0 and kei < keihistlowt) and not (self.Securities[self.XLB].Invested):
# RECOVERY
self.Liquidate()
self.SetHoldings(self.XLB, .5)
self.SetHoldings(self.XLY, .5)
self.Debug("MATERIALS {0} >> {1}".format(self.XLB, self.Time))
elif (keimom > 0 and kei > keihistlowt and kei < keihistmidt) and not (self.Securities[self.XLE].Invested):
# EARLY
self.Liquidate()
self.SetHoldings(self.XLE, .33)
self.SetHoldings(self.XLF, .33)
self.SetHoldings(self.XLI, .33)
self.Debug("ENERGY {0} >> {1}".format(self.XLE, self.Time))
elif (keimom > 0 and kei > keihistmidt and kei < keihisthight) and not (self.Securities[self.XLU].Invested):
# REBOUND
self.Liquidate()
self.SetHoldings(self.XLK, .5)
self.SetHoldings(self.XLU, .5)
self.Debug("UTILITIES {0} >> {1}".format(self.XLU, self.Time))
elif (keimom < 0 and kei < keihisthight and kei > keihistmidt) and not (self.Securities[self.XLK].Invested):
# LATE
self.Liquidate()
self.SetHoldings(self.XLK, .5)
self.SetHoldings(self.XLC, .5)
self.Debug("INFO TECH {0} >> {1}".format(self.XLK, self.Time))
elif (keimom < 0 and kei < 100 and not self.Securities[self.bond].Invested):
self.Liquidate()
self.SetHoldings(self.bond, 1)
self.Plot("LeadInd", "SMA(LeadInd)", self.sma.Current.Value)
self.Plot("LeadInd", "THRESHOLD", 100)
self.Plot("MOMP", "MOMP(LeadInd)", self.mom.Current.Value)
self.Plot("MOMP", "THRESHOLD", 0)
class QuandlCustomColumns(PythonQuandl):
def __init__(self):
# Define ValueColumnName: cannot be None, Empty or non-existant column name
self.ValueColumnName = "Value"