| Overall Statistics |
|
Total Trades 3378 Average Win 0.06% Average Loss -0.05% Compounding Annual Return -2.479% Drawdown 19.300% Expectancy -0.142 Net Profit -11.812% Sharpe Ratio -0.447 Probabilistic Sharpe Ratio 0.397% Loss Rate 62% Win Rate 38% Profit-Loss Ratio 1.24 Alpha -0.024 Beta 0 Annual Standard Deviation 0.053 Annual Variance 0.003 Information Ratio -0.825 Tracking Error 0.2 Treynor Ratio -93.819 Total Fees $3398.29 |
# QUANTCONNECT.COM - Democratizing Finance, Empowering Individuals.
# Lean Algorithmic Trading Engine v2.0. Copyright 2014 QuantConnect Corporation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from clr import AddReference
AddReference("System")
AddReference("QuantConnect.Algorithm")
AddReference("QuantConnect.Common")
from System import *
from QuantConnect import *
from QuantConnect.Algorithm import *
from ArbitrageAlphaModel import ArbitrageAlphaModel
class IntradayIndexETFArbitrageAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2015, 8, 11)
self.SetEndDate(2020, 8, 11)
self.SetCash(50000)
tickers = ['IVV', 'SPY']
symbols = [ Symbol.Create(t, SecurityType.Equity, Market.USA) for t in tickers ]
self.SetUniverseSelection( ManualUniverseSelectionModel(symbols) )
self.UniverseSettings.Resolution = Resolution.Second
self.AddAlpha(ArbitrageAlphaModel())
self.SetPortfolioConstruction(EqualWeightingPortfolioConstructionModel(lambda time: None))
self.Settings.RebalancePortfolioOnSecurityChanges = False
self.SetExecution(ImmediateExecutionModel())import pandas as pd
import numpy as np
class ArbitrageAlphaModel(AlphaModel):
"""
This class monitors the intraday bid and ask prices of two correlated ETFs. When the bid price of ETF A (B) diverts
high enough away from the ask price of ETF B (A) such that the profit_pct_threshold is reached, we start a timer. If
the arbitrage opportunity is still present after the specified timesteps, we enter the arbitrage trade by going long
ETF B (A) and short ETF A (B). When the spread reverts back to where the bid of ETF B (A) >= the ask of ETF A (B) for
the same number of timesteps, we exit the trade. To address a trending historical spread between the two ETFs, we
adjust the spread by removing the mean spread over a lookback window.
"""
symbols = [] # IVV, SPY
entry_timer = [0, 0]
exit_timer = [0, 0]
spread_adjusters = [0, 0]
long_side = -1
consolidators = {}
history = {}
def __init__(self, order_delay = 3, profit_pct_threshold = 0.02, window_size = 400):
"""
Input:
- order_delay
The number of timesteps to wait while an arbitrage opportunity is present before emitting insights
(>= 0)
- profit_pct_threshold
The amount of adjusted profit there must be in an arbitrage opportunity to signal a potential entry
(> 0)
- window_size
The length of the lookback window used to calculate the spread adjusters (to address the trending spread b/w ETFs)
(> 0)
"""
self.order_delay = order_delay
self.pct_threshold = profit_pct_threshold / 100
self.window_size = window_size
self.consolidated_update = 0
def Update(self, algorithm, data):
"""
Called each time our alpha model receives a new data slice.
Input:
- algorithm
Algorithm instance running the backtest
- data
Data for the current time step in the backtest
Returns a list of Insights to the portfolio construction model.
"""
if algorithm.IsWarmingUp:
return []
quotebars = self.get_quotebars(data)
if not quotebars:
return []
# Ensure we are not within 5 minutes of either the open or close
exchange = algorithm.Securities['SPY'].Exchange
if not (exchange.DateTimeIsOpen(algorithm.Time - timedelta(minutes=5)) and \
exchange.DateTimeIsOpen(algorithm.Time + timedelta(minutes=5))):
return []
# Search for entries
for i in range(2):
if quotebars[abs(i-1)].Bid.Close / quotebars[i].Ask.Close - self.spread_adjusters[abs(i-1)] >= self.pct_threshold:
self.entry_timer[i] += 1
if self.entry_timer[i] == self.order_delay:
self.exit_timer = [0, 0]
if self.long_side == i:
return []
self.long_side = i
return [Insight.Price(self.symbols[i], timedelta(days=9999), InsightDirection.Up),
Insight.Price(self.symbols[abs(i-1)], timedelta(days=9999), InsightDirection.Down)]
else:
return []
self.entry_timer[i] = 0
# Search for an exit
if self.long_side >= 0: # In a position
if quotebars[self.long_side].Bid.Close / quotebars[abs(self.long_side-1)].Ask.Close - self.spread_adjusters[self.long_side] >= 0: # Exit signal
self.exit_timer[self.long_side] += 1
if self.exit_timer[self.long_side] == self.order_delay: # Exit signal lasted long enough
self.exit_timer[self.long_side] = 0
i = self.long_side
self.long_side = -1
return [Insight.Price(self.symbols[i], timedelta(days=9999), InsightDirection.Flat),
Insight.Price(self.symbols[abs(i-1)], timedelta(days=9999), InsightDirection.Flat)]
else:
return []
return []
def OnSecuritiesChanged(self, algorithm, changes):
"""
Called each time our universe has changed.
Inputs:
- algorithm
Algorithm instance running the backtest
- changes
The additions and subtractions to the algorithm's security subscriptions
"""
added_symbols = [security.Symbol for security in changes.AddedSecurities]
if len(added_symbols) > 0:
self.symbols.extend(added_symbols)
if len(self.symbols) != 2:
algorithm.Error(f"ArbitrageAlphaModel must have 2 symbols to trade")
algorithm.Quit()
return
history = algorithm.History(self.symbols, self.window_size, Resolution.Second)[['bidclose', 'askclose']]
starting_row_count = min([history.loc[symbol].shape[0] for symbol in self.symbols])
for symbol in self.symbols:
self.history[symbol] = {'bids': history.loc[symbol].bidclose.to_numpy()[-starting_row_count:],
'asks': history.loc[symbol].askclose.to_numpy()[-starting_row_count:]}
self.update_spread_adjusters()
# Setup daily consolidators to update spread_adjusters
for symbol in self.symbols:
self.consolidators[symbol] = QuoteBarConsolidator(1)
self.consolidators[symbol].DataConsolidated += self.CustomDailyHandler
algorithm.SubscriptionManager.AddConsolidator(symbol, self.consolidators[symbol])
for removed in changes.RemovedSecurities:
algorithm.SubscriptionManager.RemoveConsolidator(removed.Symbol, self.consolidators[removed.Symbol])
def CustomDailyHandler(self, sender, consolidated):
"""
Updates the rolling lookback window with the latest data.
Inputs
- sender
Function calling the consolidator
- consolidated
Tradebar representing the latest completed trading day
"""
# Add new data point to history while removing expired history
self.history[consolidated.Symbol]['bids'] = np.append(self.history[consolidated.Symbol]['bids'][-self.window_size:], consolidated.Bid.Close)
self.history[consolidated.Symbol]['asks'] = np.append(self.history[consolidated.Symbol]['asks'][-self.window_size:], consolidated.Ask.Close)
# After updating the history of both symbols, update the spread adjusters
self.consolidated_update += 1
if self.consolidated_update == 2:
self.consolidated_update = 0
self.update_spread_adjusters()
def get_quotebars(self, data):
"""
Extracts the QuoteBars from the given slice.
Inputs
- data
Latest slice object the algorithm has received
Returns the QuoteBars for the symbols we are trading.
"""
if not all([data.QuoteBars.ContainsKey(symbol) for symbol in self.symbols]):
return []
quotebars = [data.QuoteBars[self.symbols[i]] for i in range(2)]
if not all([q is not None for q in quotebars]):
return []
# Ensure ask > bid for each ETF
if not all([q.Ask.Close > q.Bid.Close for q in quotebars]):
return []
return quotebars
def update_spread_adjusters(self):
"""
Updates the spread adjuster by finding the mean of the trailing spread ratio b/w ETFs.
"""
for i in range(2):
numerator_history = self.history[self.symbols[i]]['bids']
denominator_history = self.history[self.symbols[abs(i-1)]]['asks']
self.spread_adjusters[i] = (numerator_history / denominator_history).mean()