| Overall Statistics |
|
Total Orders 396 Average Win 3.38% Average Loss -2.84% Compounding Annual Return 63.709% Drawdown 38.900% Expectancy 0.212 Net Profit 168.370% Sharpe Ratio 1.251 Sortino Ratio 1.614 Probabilistic Sharpe Ratio 53.060% Loss Rate 45% Win Rate 55% Profit-Loss Ratio 1.19 Alpha 0.495 Beta 0.05 Annual Standard Deviation 0.402 Annual Variance 0.162 Information Ratio 0.736 Tracking Error 0.449 Treynor Ratio 10.07 Total Fees $0.00 Estimated Strategy Capacity $270000.00 Lowest Capacity Asset BTCUSD E3 Portfolio Turnover 53.60% |
#region imports
using System;
using System.Collections;
using System.Collections.Generic;
using System.Linq;
using System.Globalization;
using System.Drawing;
using QuantConnect;
using System.Text.RegularExpressions;
using QuantConnect.Algorithm.Framework;
using QuantConnect.Algorithm.Framework.Selection;
using QuantConnect.Algorithm.Framework.Alphas;
using QuantConnect.Algorithm.Framework.Portfolio;
using QuantConnect.Algorithm.Framework.Execution;
using QuantConnect.Algorithm.Framework.Risk;
using QuantConnect.Algorithm.Selection;
using QuantConnect.Parameters;
using QuantConnect.Benchmarks;
using QuantConnect.Brokerages;
using QuantConnect.Util;
using QuantConnect.Interfaces;
using QuantConnect.Algorithm;
using QuantConnect.Indicators;
using QuantConnect.Data;
using QuantConnect.Data.Consolidators;
using QuantConnect.Data.Custom;
using QuantConnect.DataSource;
using QuantConnect.Data.Fundamental;
using QuantConnect.Data.Market;
using QuantConnect.Data.UniverseSelection;
using QuantConnect.Notifications;
using QuantConnect.Orders;
using QuantConnect.Orders.Fees;
using QuantConnect.Orders.Fills;
using QuantConnect.Orders.Slippage;
using QuantConnect.Scheduling;
using QuantConnect.Securities;
using QuantConnect.Securities.Equity;
using QuantConnect.Securities.Future;
using QuantConnect.Securities.Option;
using QuantConnect.Securities.Forex;
using QuantConnect.Securities.Crypto;
using QuantConnect.Securities.Interfaces;
using QuantConnect.Storage;
using QCAlgorithmFramework = QuantConnect.Algorithm.QCAlgorithm;
using QCAlgorithmFrameworkBridge = QuantConnect.Algorithm.QCAlgorithm;
#endregion
using QuantConnect.DataSource;
namespace QuantConnect.Algorithm.CSharp
{
public class BlockchainBitcoinMetadataAlgorithm : QCAlgorithm
{
private Symbol _bitcoinMetadataSymbol;
private Symbol _btcSymbol;
private decimal? _lastDemandSupply = null;
public override void Initialize()
{
SetStartDate(2019, 1, 1); //Set Start Date
SetEndDate(2020, 12, 31); //Set End Date
SetCash(100000);
_btcSymbol = AddCrypto("BTCUSD", Resolution.Minute, Market.Bitfinex).Symbol;
// Requesting data
_bitcoinMetadataSymbol = AddData<BitcoinMetadata>(_btcSymbol).Symbol;
// Historical data
var history = History(new[]{_bitcoinMetadataSymbol}, 60, Resolution.Daily);
Debug($"We got {history.Count()} items from our history request for {_btcSymbol} Blockchain Bitcoin Metadata");
}
public override void OnData(Slice slice)
{
// Get data
var data = slice.Get<BitcoinMetadata>();
if (!data.IsNullOrEmpty())
{
var currentDemandSupply = data[_bitcoinMetadataSymbol].NumberofTransactions / data[_bitcoinMetadataSymbol].HashRate;
// comparing the average transaction-to-hash-rate ratio changes, we will buy bitcoin or hold cash
if (_lastDemandSupply != null && currentDemandSupply > _lastDemandSupply)
{
SetHoldings(_btcSymbol, 1);
}
else
{
SetHoldings(_btcSymbol, 0);
}
_lastDemandSupply = currentDemandSupply;
}
}
}
}