| Overall Statistics |
|
Total Orders
63751
Average Win
0.09%
Average Loss
-0.11%
Compounding Annual Return
-3.150%
Drawdown
86.700%
Expectancy
-0.027
Start Equity
100000
End Equity
44304.54
Net Profit
-55.695%
Sharpe Ratio
-0.114
Sortino Ratio
-0.112
Probabilistic Sharpe Ratio
0.000%
Loss Rate
47%
Win Rate
53%
Profit-Loss Ratio
0.82
Alpha
0
Beta
0
Annual Standard Deviation
0.207
Annual Variance
0.043
Information Ratio
-0.003
Tracking Error
0.207
Treynor Ratio
0
Total Fees
$900.35
Estimated Strategy Capacity
$2400000.00
Lowest Capacity Asset
CPG VNH372L1LHET
Portfolio Turnover
4.48%
|
# https://quantpedia.com/strategies/momentum-factor-effect-in-stocks/
#
# The investment universe consists of NYSE, AMEX, and NASDAQ stocks. We define momentum as the past 12-month return, skipping the most
# recent month’s return (to avoid microstructure and liquidity biases). To capture “momentum”, UMD portfolio goes long stocks that have
# high relative past one-year returns and short stocks that have low relative past one-year returns.
#
# QC implementation changes:
# - Instead of all listed stock, we select top 500 stocks by market cap from QC stock universe.
# region imports
from AlgorithmImports import *
from typing import List, Dict
from pandas.core.frame import DataFrame
# endregion
class MomentumFactorEffectinStocks(QCAlgorithm):
def initialize(self) -> None:
self.set_start_date(2000, 1, 1)
self.set_cash(100_000)
self.set_brokerage_model(BrokerageName.INTERACTIVE_BROKERS_BROKERAGE, AccountType.MARGIN)
self.add_equity('SPY', Resolution.DAILY).symbol
self.weight: Dict[Symbol, float] = {}
self.data: Dict[Symbol, RollingWindow] = {}
self.period: int = 12 * 21
self.quantile: int = 5
self.leverage: int = 5
self.exchange_codes: List[str] = ['NYS', 'NAS', 'ASE']
self.fundamental_count: int = 500
self.fundamental_sorting_key = lambda x: x.dollar_volume
self.selection_flag: bool = False
self.universe_settings.resolution = Resolution.DAILY
self.add_universe(self.fundamental_selection_function)
self.settings.daily_precise_end_time = False
self.settings.minimum_order_margin_portfolio_percentage = 0.
self._recent_month: int = -1
def on_securities_changed(self, changes: SecurityChanges) -> None:
for security in changes.added_securities:
security.set_fee_model(CustomFeeModel())
security.set_leverage(self.leverage)
def fundamental_selection_function(self, fundamental: List[Fundamental]) -> List[Symbol]:
# update the rolling window every day
[self.data[stock.symbol].add(stock.adjusted_price) for stock in fundamental if stock.symbol in self.data]
if self._recent_month == self.time.month:
return Universe.UNCHANGED
self._recent_month = self.time.month
self.selection_flag = True
selected: List[Fundamental] = [
x for x in fundamental if x.has_fundamental_data and x.market_cap != 0 and x.market == 'usa' and \
x.security_reference.exchange_id in self.exchange_codes
]
if len(selected) > self.fundamental_count:
selected = [x for x in sorted(selected, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count]]
# warmup price rolling windows
for stock in selected:
symbol: Symbol = stock.symbol
if symbol not in self.data:
self.data[symbol] = RollingWindow[float](self.period)
history: DataFrame = self.history(symbol, self.period, Resolution.DAILY)
if history.empty:
self.log(f"Not enough data for {symbol} yet")
continue
closes: Series = history.loc[symbol].close
for time, close in closes.items():
self.data[symbol].add(close)
perf: Dict[Symbol, float] = {
stock.symbol : self.data[stock.symbol][0] / self.data[stock.symbol][self.period - 1] - 1 for stock in selected if self.data[stock.symbol].is_ready
}
if len(perf) >= self.quantile:
sorted_by_perf: List = sorted(perf, key=perf.get)
quantile: int = int(len(sorted_by_perf) / self.quantile)
long: List[Symbol] = sorted_by_perf[-quantile:]
short: List[Symbol] = sorted_by_perf[:quantile]
# calculate weights
for i, portfolio in enumerate([long, short]):
for symbol in portfolio:
self.weight[symbol] = ((-1) ** i) / len(portfolio)
return list(self.weight.keys())
def on_data(self, slice: Slice) -> None:
if not self.selection_flag:
return
self.selection_flag = False
# trade execution
portfolio: List[PortfolioTarget] = [
PortfolioTarget(symbol, w) for symbol, w in self.weight.items() if slice.contains_key(symbol)
]
self.set_holdings(portfolio, True)
self.weight.clear()
# Custom fee model.
class CustomFeeModel(FeeModel):
def get_order_fee(self, parameters):
fee = parameters.security.price * parameters.order.absolute_quantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))