| Overall Statistics |
|
Total Trades
147254
Average Win
0.01%
Average Loss
-0.01%
Compounding Annual Return
10.736%
Drawdown
45.200%
Expectancy
0.287
Net Profit
1019.380%
Sharpe Ratio
0.696
Probabilistic Sharpe Ratio
3.032%
Loss Rate
22%
Win Rate
78%
Profit-Loss Ratio
0.65
Alpha
0.042
Beta
0.639
Annual Standard Deviation
0.115
Annual Variance
0.013
Information Ratio
0.259
Tracking Error
0.078
Treynor Ratio
0.125
Total Fees
$2334.46
Estimated Strategy Capacity
$78000.00
Lowest Capacity Asset
UBA RDAO81KKALPH
Portfolio Turnover
1.10%
|
# https://quantpedia.com/strategies/low-volatility-factor-effect-in-stocks-long-only-version/
#
# The investment universe consists of global large-cap stocks (or US large-cap stocks). At the end of each month, the investor constructs
# equally weighted decile portfolios by ranking the stocks on the past three-year volatility of weekly returns. The investor goes long
# stocks in the top decile (stocks with the lowest volatility).
#
# QC implementation changes:
# - Top quartile (stocks with the lowest volatility) is selected instead of decile.
#region imports
from AlgorithmImports import *
import numpy as np
from typing import List, Dict
#endregion
class LowVolatilityFactorEffectStocks(QCAlgorithm):
def Initialize(self) -> None:
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbol:Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.period:int = 12*21
self.coarse_count:int = 3000
self.quantile:int = 4
self.leverage:int = 10
self.data:Dict[Symbol, SymbolData] = {}
self.long:List[Symbol] = []
self.selection_flag:bool = True
self.UniverseSettings.Resolution = Resolution.Daily
self.Settings.MinimumOrderMarginPortfolioPercentage = 0
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.Schedule.On(self.DateRules.MonthEnd(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes:SecurityChanges) -> None:
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(self.leverage)
def CoarseSelectionFunction(self, coarse:List[CoarseFundamental]) -> List[Symbol]:
# Update the rolling window every day.
for stock in coarse:
symbol:Symbol = stock.Symbol
# Store daily price.
if symbol in self.data:
self.data[symbol].update(stock.AdjustedPrice)
if not self.selection_flag:
return Universe.Unchanged
selected:List[Symbol] = [x.Symbol for x in coarse if x.HasFundamentalData and x.Market == 'usa']
# selected = [x.Symbol
# for x in sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa'],
# key = lambda x: x.DollarVolume, reverse = True)[:self.coarse_count]]
# Warmup price rolling windows.
for symbol in selected:
if symbol in self.data:
continue
self.data[symbol] = SymbolData(self.period)
history:DataFrame = self.History(symbol, self.period, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet.")
continue
closes:pd.Series = history.loc[symbol].close
for time, close in closes.iteritems():
self.data[symbol].update(close)
return [x for x in selected if self.data[x].is_ready()]
def FineSelectionFunction(self, fine:List[FineFundamental]) -> List[Symbol]:
fine:List[Symbol] = [x for x in fine if x.MarketCap != 0]
# market cap sorting
if len(fine) > self.coarse_count:
sorted_by_market_cap:List[Symbol] = sorted(fine, key = lambda x: x.MarketCap, reverse=True)
fine:List[Symbol] = sorted_by_market_cap[:self.coarse_count]
weekly_vol:Dict[Symbol, float] = {x.Symbol : self.data[x.Symbol].volatility() for x in fine}
if len(weekly_vol) >= self.quantile:
# volatility sorting
sorted_by_vol:List[Tuple] = sorted(weekly_vol.items(), key = lambda x: x[1], reverse = True)
quantile:int = int(len(sorted_by_vol) / self.quantile)
self.long = [x[0] for x in sorted_by_vol[-quantile:]]
return self.long
def OnData(self, data:Slice) -> None:
if not self.selection_flag:
return
self.selection_flag = False
# Trade execution.
stocks_invested:List[Symbol] = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in stocks_invested:
if symbol not in self.long:
self.Liquidate(symbol)
for symbol in self.long:
if symbol in data and data[symbol]:
self.SetHoldings(symbol, 1 / len(self.long))
self.long.clear()
def Selection(self) -> None:
self.selection_flag:bool = True
class SymbolData():
def __init__(self, period:int) -> None:
self.price:RollingWindow = RollingWindow[float](period)
def update(self, value:float) -> None:
self.price.Add(value)
def is_ready(self) -> bool:
return self.price.IsReady
def volatility(self) -> float:
closes:List[float] = [x for x in self.price]
# Weekly volatility calc.
separete_weeks:List[float] = [closes[x:x+5] for x in range(0, len(closes), 5)]
weekly_returns:List[float] = [(x[0] - x[-1]) / x[-1] for x in separete_weeks]
return np.std(weekly_returns)
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))