Overall Statistics
Total Trades
13685
Average Win
0.41%
Average Loss
-0.38%
Compounding Annual Return
1.823%
Drawdown
15.900%
Expectancy
0.022
Net Profit
53.858%
Sharpe Ratio
-0.111
Probabilistic Sharpe Ratio
0.001%
Loss Rate
51%
Win Rate
49%
Profit-Loss Ratio
1.07
Alpha
-0.007
Beta
0.028
Annual Standard Deviation
0.056
Annual Variance
0.003
Information Ratio
-0.261
Tracking Error
0.166
Treynor Ratio
-0.225
Total Fees
$19529.24
Estimated Strategy Capacity
$170000.00
Lowest Capacity Asset
EWP R735QTJ8XC9X
Portfolio Turnover
31.85%
 
 
# https://quantpedia.com/strategies/pairs-trading-with-country-etfs/
#
# The investment universe consists of 22 international ETFs. A normalized cumulative total return index is created for each ETF (dividends 
# included), and the starting price during the formation period is set to $1 (price normalization). The selection of pairs is made after
# a 120 day formation period. Pair’s distance for all ETF pairs is calculated as the sum of squared deviations between two normalized 
# price series. The top 5 pairs with the smallest distance are used in the subsequent 20 day trading period. The strategy is monitored
# daily, and trade is opened when the divergence between the pairs exceeds 0.5x the historical standard deviation. Investors go long 
# on the undervalued ETF and short on the overvalued ETF. The trade is exited if a pair converges or after 20 days (if the pair does 
# not converge within the next 20 business days). Pairs are weighted equally, and the portfolio is rebalanced on a daily basis.
#
# QC Implementation:

import numpy as np
from AlgorithmImports import *
import itertools as it

class PairsTradingwithCountryETFs(QCAlgorithm):
    
    def Initialize(self):
        self.SetStartDate(2000, 1, 1)
        self.SetCash(100000)
       
        self.symbols = [
                        "EWA",  # iShares MSCI Australia Index ETF
                        "EWO",  # iShares MSCI Austria Investable Mkt Index ETF
                        "EWK",  # iShares MSCI Belgium Investable Market Index ETF
                        "EWZ",  # iShares MSCI Brazil Index ETF
                        "EWC",  # iShares MSCI Canada Index ETF
                        "FXI",  # iShares China Large-Cap ETF
                        "EWQ",  # iShares MSCI France Index ETF
                        "EWG",  # iShares MSCI Germany ETF 
                        "EWH",  # iShares MSCI Hong Kong Index ETF
                        "EWI",  # iShares MSCI Italy Index ETF
                        "EWJ",  # iShares MSCI Japan Index ETF
                        "EWM",  # iShares MSCI Malaysia Index ETF
                        "EWW",  # iShares MSCI Mexico Inv. Mt. Idx
                        "EWN",  # iShares MSCI Netherlands Index ETF
                        "EWS",  # iShares MSCI Singapore Index ETF
                        "EZA",  # iShares MSCI South Africe Index ETF
                        "EWY",  # iShares MSCI South Korea ETF
                        "EWP",  # iShares MSCI Spain Index ETF
                        "EWD",  # iShares MSCI Sweden Index ETF
                        "EWL",  # iShares MSCI Switzerland Index ETF
                        "EWT",  # iShares MSCI Taiwan Index ETF
                        "THD",  # iShares MSCI Thailand Index ETF
                        "EWU",  # iShares MSCI United Kingdom Index ETF
                        "SPY",  # SPDR S&P 500 ETF
                        ]
        
        self.period = 120
        self.max_traded_pairs = 5 # The top 5 pairs with the smallest distance are used.
        
        self.history_price = {}
        self.traded_pairs = []
        self.traded_quantity = {}

        for symbol in self.symbols:
            data = self.AddEquity(symbol, Resolution.Daily)
            data.SetFeeModel(CustomFeeModel())
            data.SetLeverage(5)
            symbol_obj = data.Symbol
            
            if symbol not in self.history_price:
                self.history_price[symbol] = RollingWindow[float](self.period)
                
                history = self.History(self.Symbol(symbol), self.period, Resolution.Daily)
                if history.empty:
                    self.Log(f"Note enough data for {symbol} yet")
                else:
                    closes = history.loc[symbol].close[:-1]
                    for time, close in closes.iteritems():
                        self.history_price[symbol].Add(close)

        self.sorted_pairs = []
        self.symbol_pairs = list(it.combinations(self.symbols, 2))  
        self.days = 20
    
    def OnData(self, data):
        # Update the price series everyday
        for symbol in self.history_price:
            symbol_obj = self.Symbol(symbol)
            if symbol_obj in data and data[symbol_obj]:
                price = data[symbol_obj].Value
                self.history_price[symbol].Add(price)
                        
        # Start of trading period.
        if self.days == 20:
            # minimize the sum of squared deviations
            distances = {}
            for pair in self.symbol_pairs:
                if self.history_price[pair[0]].IsReady and self.history_price[pair[1]].IsReady:
                    if (self.Time.date() - self.Securities[pair[0]].GetLastData().Time.date()).days <= 3 and (self.Time.date() - self.Securities[pair[1]].GetLastData().Time.date()).days <= 3:
                        distances[pair] = self.Distance([x for x in self.history_price[pair[0]]], [x for x in self.history_price[pair[1]]])
            
            if len(distances) != 0:
                self.sorted_pairs = sorted(distances.items(), key = lambda x: x[1])[:self.max_traded_pairs]
                self.sorted_pairs = [x[0] for x in self.sorted_pairs]
            
            self.Liquidate()
            self.traded_pairs.clear()
            self.traded_quantity.clear()
            
            self.days = 0
        
        self.days += 1
        
        if self.sorted_pairs is None: return
    
        pairs_to_remove = []
    
        for pair in self.sorted_pairs:
            # Calculate the spread of two price series.
            price_a = [x for x in self.history_price[pair[0]]]
            price_b = [x for x in self.history_price[pair[1]]]
            norm_a = np.array(price_a) / price_a[-1]
            norm_b = np.array(price_b) / price_b[-1]
            
            spread = norm_a - norm_b
            mean = np.mean(spread)
            std = np.std(spread)
            actual_spread = spread[0]
            
            # Long-short position is opened when pair prices have diverged by two standard deviations.
            traded_portfolio_value = self.Portfolio.TotalPortfolioValue / self.max_traded_pairs
            if actual_spread > mean + 0.5*std or actual_spread < mean - 0.5*std:
                if pair not in self.traded_pairs:
                    # open new position for pair, if there's place for it.
                    if len(self.traded_pairs) < self.max_traded_pairs:
                        symbol_a = pair[0]
                        symbol_b = pair[1]
                        a_price_norm = norm_a[0]
                        b_price_norm = norm_b[0]
                        a_price = price_a[0]
                        b_price = price_b[0]
                            
                        # a etf's price > b etf's price
                        if a_price_norm > b_price_norm:
                            long_q = traded_portfolio_value / b_price    # long b etf
                            short_q = -traded_portfolio_value / a_price  # short a etf
                            if self.Securities.ContainsKey(symbol_a) and self.Securities.ContainsKey(symbol_b) and \
                                self.Securities[symbol_a].Price != 0 and self.Securities[symbol_a].IsTradable and \
                                self.Securities[symbol_b].Price != 0 and self.Securities[symbol_b].IsTradable:
                                self.MarketOrder(symbol_a, short_q)
                                self.MarketOrder(symbol_b, long_q)
                                
                                self.traded_quantity[pair] = (short_q, long_q)
                                self.traded_pairs.append(pair)
                        # b etf's price > a etf's price
                        else:
                            long_q = traded_portfolio_value / a_price    # long a etf
                            short_q = -traded_portfolio_value / b_price  # short b etf
                            if self.Securities.ContainsKey(symbol_a) and self.Securities.ContainsKey(symbol_b) and \
                                self.Securities[symbol_a].Price != 0 and self.Securities[symbol_a].IsTradable and \
                                self.Securities[symbol_b].Price != 0 and self.Securities[symbol_b].IsTradable:
                                self.MarketOrder(symbol_a, long_q)
                                self.MarketOrder(symbol_b, short_q)
                                
                                self.traded_quantity[pair] = (long_q, short_q)
                                self.traded_pairs.append(pair)
            # The position is closed when prices revert back.
            else:
                if pair in self.traded_pairs and pair in self.traded_quantity:
                    # make opposite order to opened position
                    self.MarketOrder(pair[0], -self.traded_quantity[pair][0])
                    self.MarketOrder(pair[1], -self.traded_quantity[pair][1])
                    pairs_to_remove.append(pair)
            
        for pair in pairs_to_remove:
            self.traded_pairs.remove(pair)
            del self.traded_quantity[pair]

    def Distance(self, price_a, price_b):
        # Calculate the sum of squared deviations between two normalized price series.
        norm_a = np.array(price_a) / price_a[-1]
        norm_b = np.array(price_b) / price_b[-1]
        return sum((norm_a - norm_b)**2)

# Custom fee model.
class CustomFeeModel(FeeModel):
    def GetOrderFee(self, parameters):
        fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
        return OrderFee(CashAmount(fee, "USD"))