| Overall Statistics |
|
Total Trades
31007
Average Win
0.24%
Average Loss
-0.26%
Compounding Annual Return
6.602%
Drawdown
89.800%
Expectancy
0.045
Net Profit
354.557%
Sharpe Ratio
0.334
Probabilistic Sharpe Ratio
0.003%
Loss Rate
46%
Win Rate
54%
Profit-Loss Ratio
0.92
Alpha
-0.002
Beta
2.355
Annual Standard Deviation
0.417
Annual Variance
0.174
Information Ratio
0.285
Tracking Error
0.278
Treynor Ratio
0.059
Total Fees
$9062.49
Estimated Strategy Capacity
$180000000.00
Lowest Capacity Asset
TER R735QTJ8XC9X
Portfolio Turnover
10.41%
|
# https://quantpedia.com/strategies/12-month-cycle-in-cross-section-of-stocks-returns/
#
# The top 30% of firms based on their market cap from NYSE and AMEX are part of the investment universe. Every month, stocks are grouped
# into ten portfolios (with an equal number of stocks in each portfolio) according to their performance in one month one year ago. Investors
# go long in stocks from the winner decile and shorts stocks from the loser decile. The portfolio is equally weighted and rebalanced every month.
#
# QC implementation changes:
# - Universe consists of top 3000 US stock by market cap from NYSE, AMEX and NASDAQ.
# - Portfolio is value weighted.
from AlgorithmImports import *
from typing import List, Dict, Tuple
class Month12CycleinCrossSectionofStocksReturns(QCAlgorithm):
def Initialize(self) -> None:
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbol:Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.coarse_count:int = 500
self.leverage:int = 5
self.quantile:int = 10
# Monthly close data.
self.data:Dict[Symbol, SymbolData] = {}
self.period:int = 13
self.weight:Dict[Symbol, float] = {}
self.selection_flag:bool = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.Schedule.On(self.DateRules.MonthEnd(self.symbol), self.TimeRules.BeforeMarketClose(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes:SecurityChanges) -> None:
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(self.leverage)
def CoarseSelectionFunction(self, coarse:List[CoarseFundamental]) -> List[Symbol]:
if not self.selection_flag:
return Universe.Unchanged
# Update the rolling window every month.
for stock in coarse:
symbol:symbol = stock.Symbol
# Store monthly price.
if symbol in self.data:
self.data[symbol].update(stock.AdjustedPrice)
# selected = [x.Symbol for x in coarse if x.HasFundamentalData and x.Market == 'usa']
selected:List[Symbol] = [x.Symbol
for x in sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa'],
key = lambda x: x.DollarVolume, reverse = True)[:self.coarse_count]]
# Warmup price rolling windows.
for symbol in selected:
if symbol in self.data:
continue
self.data[symbol] = SymbolData(self.period)
history:DataFrame = self.History(symbol, self.period*30, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet.")
continue
closes:pd.Series = history.loc[symbol].close
closes_len:int = len(closes.keys())
# Find monthly closes.
for index, time_close in enumerate(closes.iteritems()):
# index out of bounds check.
if index + 1 < closes_len:
date_month:int = time_close[0].date().month
next_date_month:int = closes.keys()[index + 1].month
# Found last day of month.
if date_month != next_date_month:
self.data[symbol].update(time_close[1])
return [x for x in selected if self.data[x].is_ready()]
def FineSelectionFunction(self, fine:List[FineFundamental]) -> List[Symbol]:
fine:List[Symbol] = [x for x in fine if x.MarketCap != 0 and x.CompanyReference.IsREIT != 1 and \
((x.SecurityReference.ExchangeId == "NYS") or (x.SecurityReference.ExchangeId == "NAS") or (x.SecurityReference.ExchangeId == "ASE"))]
if len(fine) > self.coarse_count:
sorted_by_market_cap:List = sorted(fine, key = lambda x: x.MarketCap, reverse=True)
top_by_market_cap:List[Symbol] = sorted_by_market_cap[:self.coarse_count]
else:
top_by_market_cap = fine
# Performance sorting. One month performance, one year ago with market cap data.
performance_market_cap:Dict[Symbol, Tuple[float, float]] = { x.Symbol : (self.data[x.Symbol].performance(), x.MarketCap) for x in top_by_market_cap if x.Symbol in self.data and self.data[x.Symbol].is_ready()}
long:List[Tuple] = []
short:List[Tuple] = []
if len(performance_market_cap) >= self.quantile:
sorted_by_perf:List[Tuple] = sorted(performance_market_cap.items(), key = lambda x:x[1][0], reverse = True)
quantile:int = int(len(sorted_by_perf) / self.quantile)
long = [x for x in sorted_by_perf[:quantile]]
short = [x for x in sorted_by_perf[-quantile:]]
total_market_cap_long:float = sum([x[1][1] for x in long])
for symbol, perf_market_cap in long:
self.weight[symbol] = perf_market_cap[1] / total_market_cap_long
total_market_cap_short = sum([x[1][1] for x in short])
for symbol, perf_market_cap in short:
self.weight[symbol] = perf_market_cap[1] / total_market_cap_short
return [x[0] for x in self.weight.items()]
def OnData(self, data:Slice) -> None:
if not self.selection_flag:
return
self.selection_flag = False
# Trade execution.
stocks_invested:List[Symbol] = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in stocks_invested:
if symbol not in self.weight:
self.Liquidate(symbol)
for symbol, w in self.weight.items():
if symbol in data and data[symbol]:
self.SetHoldings(symbol, w)
self.weight.clear()
def Selection(self) -> None:
self.selection_flag = True
class SymbolData():
def __init__(self, period:int):
self.Window:RollingWindow = RollingWindow[float](period)
def update(self, value:float) -> None:
self.Window.Add(value)
def is_ready(self) -> bool:
return self.Window.IsReady
# One month performance, one year ago.
def performance(self) -> float:
values:float = [x for x in self.Window]
return (values[-2] / values[-1] - 1)
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))