| Overall Statistics |
|
Total Trades
35309
Average Win
0.37%
Average Loss
-0.27%
Compounding Annual Return
22.071%
Drawdown
39.500%
Expectancy
0.089
Net Profit
7319.083%
Sharpe Ratio
0.9
Probabilistic Sharpe Ratio
16.885%
Loss Rate
54%
Win Rate
46%
Profit-Loss Ratio
1.35
Alpha
0.211
Beta
0.001
Annual Standard Deviation
0.234
Annual Variance
0.055
Information Ratio
0.464
Tracking Error
0.293
Treynor Ratio
360.398
Total Fees
$598004.90
Estimated Strategy Capacity
$36000000.00
Lowest Capacity Asset
GLX R735QTJ8XC9X
|
# https://quantpedia.com/strategies/short-term-reversal-in-stocks/
#
# The investment universe consists of the 100 biggest companies by market capitalization.
# The investor goes long on the ten stocks with the lowest performance in the previous week and
# goes short on the ten stocks with the greatest performance of the prior month. The portfolio is rebalanced weekly.
#
# QC implementation changes:
# - Instead of all listed stocks, we first select 500 most liquid stock from QC as a first filter due to time complexity issues tied to whole universe filtering.
# - Then top 100 market cap stocks are used in momentum sorting.
class ShortTermReversalEffectinStocks(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.coarse_count = 500
self.stock_selection = 10
self.top_by_market_cap_count = 100
self.period = 21
self.long = []
self.short = []
# Daily close data
self.data = {}
self.day = 1
self.selection_flag = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.Schedule.On(self.DateRules.EveryDay(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel(self))
security.SetLeverage(5)
def CoarseSelectionFunction(self, coarse):
# Update the rolling window every day.
for stock in coarse:
symbol = stock.Symbol
# Store monthly price.
if symbol in self.data:
self.data[symbol].update(stock.AdjustedPrice)
if not self.selection_flag:
return Universe.Unchanged
selected = sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa' and x.Price > 1],
key=lambda x: x.DollarVolume, reverse=True)
selected = [x.Symbol for x in selected][:self.coarse_count]
# Warmup price rolling windows.
for symbol in selected:
if symbol in self.data:
continue
self.data[symbol] = SymbolData(self.period)
history = self.History(symbol, self.period, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet")
continue
closes = history.loc[symbol].close
for time, close in closes.iteritems():
self.data[symbol].update(close)
return [x for x in selected if self.data[x].is_ready()]
def FineSelectionFunction(self, fine):
fine = [x for x in fine if x.MarketCap != 0]
sorted_by_market_cap = sorted(fine, key = lambda x:x.MarketCap, reverse = True)
top_by_market_cap = [x.Symbol for x in sorted_by_market_cap[:self.top_by_market_cap_count]]
month_performances = {symbol : self.data[symbol].monthly_return() for symbol in top_by_market_cap}
week_performances = {symbol : self.data[symbol].weekly_return() for symbol in top_by_market_cap}
sorted_by_month_perf = [x[0] for x in sorted(month_performances.items(), key=lambda item: item[1], reverse=True)]
sorted_by_week_perf = [x[0] for x in sorted(week_performances.items(), key=lambda item: item[1])]
self.long = sorted_by_week_perf[:self.stock_selection]
for symbol in sorted_by_month_perf: # Month performances are sorted descending
if symbol not in self.long:
self.short.append(symbol)
if len(self.short) == 10:
break
return self.long + self.short
def OnData(self, data):
if not self.selection_flag:
return
self.selection_flag = False
invested = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in self.long + self.short:
self.Liquidate(symbol)
# Leveraged portfolio - 100% long, 100% short.
for symbol in self.long:
if self.Securities[symbol].Price != 0 and self.Securities[symbol].IsTradable:
self.SetHoldings(symbol, 1 / len(self.long))
for symbol in self.short:
if self.Securities[symbol].Price != 0 and self.Securities[symbol].IsTradable:
self.SetHoldings(symbol, -1 / len(self.short))
self.long.clear()
self.short.clear()
def Selection(self):
if self.day == 5:
self.selection_flag = True
self.day += 1
if self.day > 5:
self.day = 1
class SymbolData():
def __init__(self, period):
self.closes = RollingWindow[float](period)
self.period = period
def update(self, close):
self.closes.Add(close)
def is_ready(self) -> bool:
return self.closes.IsReady
def weekly_return(self) -> float:
return self.closes[0] / self.closes[5] - 1
def monthly_return(self) -> float:
return self.closes[0] / self.closes[self.period-1] - 1
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))