| Overall Statistics |
|
Total Orders
145207
Average Win
0.01%
Average Loss
-0.01%
Compounding Annual Return
11.015%
Drawdown
45.700%
Expectancy
0.278
Start Equity
100000
End Equity
1426964.92
Net Profit
1326.965%
Sharpe Ratio
0.502
Sortino Ratio
0.495
Probabilistic Sharpe Ratio
2.447%
Loss Rate
22%
Win Rate
78%
Profit-Loss Ratio
0.64
Alpha
0.032
Beta
0.656
Annual Standard Deviation
0.119
Annual Variance
0.014
Information Ratio
0.225
Tracking Error
0.078
Treynor Ratio
0.091
Total Fees
$2784.88
Estimated Strategy Capacity
$1000000.00
Lowest Capacity Asset
SENEB R735QTJ8XC9X
Portfolio Turnover
1.09%
|
# https://quantpedia.com/strategies/low-volatility-factor-effect-in-stocks-long-only-version/
#
# The investment universe consists of global large-cap stocks (or US large-cap stocks). At the end of each month, the investor constructs
# equally weighted decile portfolios by ranking the stocks on the past three-year volatility of weekly returns. The investor goes long
# stocks in the top decile (stocks with the lowest volatility).
#
# QC implementation changes:
# - Top quartile (stocks with the lowest volatility) is fundamental instead of decile.
#region imports
from AlgorithmImports import *
import numpy as np
from typing import List, Dict
#endregion
class LowVolatilityFactorEffectStocks(QCAlgorithm):
def Initialize(self) -> None:
self.SetStartDate(2000, 1, 1)
self.SetCash(100_000)
self.symbol: Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.period: int = 12 * 21
self.fundamental_count: int = 3000
self.quantile: int = 4
self.leverage: int = 10
self.data: Dict[Symbol, SymbolData] = {}
self.long: List[Symbol] = []
self.selection_flag: bool = True
self.UniverseSettings.Resolution = Resolution.Daily
self.Settings.MinimumOrderMarginPortfolioPercentage = 0.
self.settings.daily_precise_end_time = False
self.AddUniverse(self.FundamentalSelectionFunction)
self.Schedule.On(self.DateRules.MonthEnd(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(self.leverage)
def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]:
# Update the rolling window every day.
for stock in fundamental:
symbol: Symbol = stock.Symbol
# Store daily price.
if symbol in self.data:
self.data[symbol].update(stock.AdjustedPrice)
if not self.selection_flag:
return Universe.Unchanged
fundamental: List[Fundamental] = [
x for x in fundamental if x.HasFundamentalData and x.Market == 'usa' and x.MarketCap != 0
]
if len(fundamental) > self.fundamental_count:
fundamental = sorted(fundamental, key = lambda x: x.MarketCap, reverse=True)[:self.fundamental_count]
# Warmup price rolling windows.
weekly_vol: Dict[Symbol, float] = {}
for stock in fundamental:
symbol: Symbol = stock.Symbol
if symbol not in self.data:
self.data[symbol] = SymbolData(self.period)
history: DataFrame = self.History(symbol, self.period, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet.")
continue
closes: pd.Series = history.loc[symbol].close
for time, close in closes.items():
self.data[symbol].update(close)
if self.data[symbol].is_ready():
weekly_vol[symbol] = self.data[symbol].volatility()
if len(weekly_vol) >= self.quantile:
# volatility sorting
sorted_by_vol: List[Tuple] = sorted(weekly_vol.items(), key = lambda x: x[1], reverse = True)
quantile: int = int(len(sorted_by_vol) / self.quantile)
self.long = [x[0] for x in sorted_by_vol[-quantile:]]
return self.long
def OnData(self, data: Slice) -> None:
if not self.selection_flag:
return
self.selection_flag = False
# trade execution
invested: List[Symbol] = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in self.long:
self.Liquidate(symbol)
for symbol in self.long:
if symbol in data and data[symbol]:
self.SetHoldings(symbol, 1. / len(self.long))
self.long.clear()
def Selection(self) -> None:
self.selection_flag = True
class SymbolData():
def __init__(self, period: int) -> None:
self.price: RollingWindow = RollingWindow[float](period)
def update(self, value: float) -> None:
self.price.Add(value)
def is_ready(self) -> bool:
return self.price.IsReady
def volatility(self) -> float:
closes: List[float] = [x for x in self.price]
# Weekly volatility calc.
separete_weeks: List[float] = [closes[x:x+5] for x in range(0, len(closes), 5)]
weekly_returns: List[float] = [(x[0] - x[-1]) / x[-1] for x in separete_weeks]
return np.std(weekly_returns)
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters: OrderFeeParameters) -> OrderFee:
fee: float = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))