| Overall Statistics |
|
Total Trades
126
Average Win
0.47%
Average Loss
-1.08%
Compounding Annual Return
0.071%
Drawdown
40.700%
Expectancy
-0.069
Net Profit
1.546%
Sharpe Ratio
0.038
Probabilistic Sharpe Ratio
0.000%
Loss Rate
35%
Win Rate
65%
Profit-Loss Ratio
0.43
Alpha
0.003
Beta
-0.008
Annual Standard Deviation
0.054
Annual Variance
0.003
Information Ratio
-0.393
Tracking Error
0.185
Treynor Ratio
-0.255
Total Fees
$32.15
Estimated Strategy Capacity
$0
Lowest Capacity Asset
CME_EC1.QuantpediaFutures 2S
|
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# Quandl "value" data
class QuandlValue(PythonQuandl):
def __init__(self):
self.ValueColumnName = 'Value'
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
return data
# https://quantpedia.com/strategies/currency-value-factor-ppp-strategy/
#
# Create an investment universe consisting of several currencies (10-20). Use the latest OECD Purchasing Power Parity figure to assess
# the fair value of each currency versus USD in the month of publishing and then use monthly CPI changes and exchange rate changes to
# create fair PPP value for the month prior to the current month. Go long three currencies that are the most undervalued (lowest PPP
# fair value figure) and go short three currencies that are the most overvalued (highest PPP fair value figure). Invest cash not used
# as margin on overnight rates. Rebalance quarterly or monthly.
#
# QC implementation changes:
# - Yearly rebalance instead of quarterly is performed.
import data_tools
class CurrencyValueFactorPPPStrategy(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
# Currency future symbol and PPP yearly quandl symbol.
# PPP source: https://www.quandl.com/data/ODA-IMF-Cross-Country-Macroeconomic-Statistics?keyword=%20United%20States%20Implied%20PPP%20Conversion%20Rate
self.symbols = {"CME_AD1" : "ODA/AUS_PPPEX", # Australian Dollar Futures, Continuous Contract #1
"CME_BP1" : "ODA/GBR_PPPEX", # British Pound Futures, Continuous Contract #1
"CME_CD1" : "ODA/CAD_PPPEX", # Canadian Dollar Futures, Continuous Contract #1
"CME_EC1" : "ODA/DEU_PPPEX", # Euro FX Futures, Continuous Contract #1
"CME_JY1" : "ODA/JPN_PPPEX", # Japanese Yen Futures, Continuous Contract #1
"CME_NE1" : "ODA/NZL_PPPEX", # New Zealand Dollar Futures, Continuous Contract #1
"CME_SF1" : "ODA/CHE_PPPEX" # Swiss Franc Futures, Continuous Contract #1
}
for symbol in self.symbols:
data = self.AddData(data_tools.QuantpediaFutures, symbol, Resolution.Daily)
data.SetFeeModel(data_tools.CustomFeeModel(self))
data.SetLeverage(5)
# PPP quandl data.
ppp_symbol = self.symbols[symbol]
self.AddData(data_tools.QuandlValue, ppp_symbol, Resolution.Daily)
self.month = 12
self.Schedule.On(self.DateRules.MonthStart('CME_AD1'), self.TimeRules.AfterMarketOpen('CME_AD1'), self.Rebalance)
def Rebalance(self):
# Yearly sorting.
if self.month < 12:
self.month += 1
return
else:
self.month = 1
# PPP sorting.
sorted_by_ppp = sorted([x for x in self.symbols.items() if self.Securities.ContainsKey(x[1])], key = lambda x: self.Securities[x[1]].Price, reverse = True)
count = 3
long = [x[0] for x in sorted_by_ppp[-count:]]
short = [x[0] for x in sorted_by_ppp[:count]]
# Trade execution.
invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long + short:
self.Liquidate(symbol)
for symbol in long:
if self.Securities[symbol].Price != 0:
self.SetHoldings(symbol, 1 / len(long))
for symbol in short:
if self.Securities[symbol].Price != 0:
self.SetHoldings(symbol, -1 / len(short))