| Overall Statistics |
|
Total Orders
17127
Average Win
0.12%
Average Loss
-0.06%
Compounding Annual Return
5.272%
Drawdown
51.600%
Expectancy
0.350
Start Equity
100000
End Equity
352415.37
Net Profit
252.415%
Sharpe Ratio
0.166
Sortino Ratio
0.222
Probabilistic Sharpe Ratio
0.000%
Loss Rate
56%
Win Rate
44%
Profit-Loss Ratio
2.08
Alpha
0.032
Beta
-0.131
Annual Standard Deviation
0.161
Annual Variance
0.026
Information Ratio
-0.066
Tracking Error
0.24
Treynor Ratio
-0.203
Total Fees
$556.87
Estimated Strategy Capacity
$8000.00
Lowest Capacity Asset
IVCB XVQ0TDUA32AT
Portfolio Turnover
0.43%
|
# https://quantpedia.com/strategies/small-capitalization-stocks-premium-anomaly/
#
# The investment universe contains all NYSE, AMEX, and NASDAQ stocks. Decile portfolios are formed based on the market capitalization
# of stocks. To capture “size” effect, SMB portfolio goes long small stocks (lowest decile) and short big stocks (highest decile).
#
# QC implementation changes:
# - The investment universe contains 3000 largest stocks traded on NYSE, AMEX, and NASDAQ.
from AlgorithmImports import *
from typing import List
class SizeFactorSmallCapitalizationStocksPremium(QCAlgorithm):
def Initialize(self) -> None:
self.SetStartDate(2000, 1, 1)
self.SetCash(100_000)
self.UniverseSettings.Leverage = 5
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.FundamentalFunction)
self.Settings.MinimumOrderMarginPortfolioPercentage = 0.0
self.long_symbols: List[Symbol] = []
self.short_symbols: List[Symbol] = []
# Fundamental Filter Parameters
self.exchange_codes: List[str] = ['NYS', 'NAS', 'ASE']
self.fundamentals_count: int = 3_000
self.quantile: int = 10
self.rebalancing_month: int = 12
self.selection_flag: bool = True
exchange: Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.Schedule.On(self.DateRules.MonthEnd(exchange),
self.TimeRules.AfterMarketOpen(exchange),
self.Selection)
def FundamentalFunction(self, fundamental: List[Fundamental]) -> List[Symbol]:
if not self.selection_flag:
return Universe.Unchanged
filtered: List[Fundamental] = [f for f in fundamental if f.HasFundamentalData
and f.SecurityReference.ExchangeId in self.exchange_codes]
sorted_by_market_cap: List[Fundamental] = sorted(filtered,
key = lambda x: x.MarketCap,
reverse=True)[:self.fundamentals_count]
if len(sorted_by_market_cap) >= self.quantile:
quintile: int = int(len(sorted_by_market_cap) / self.quantile)
self.long_symbols = [i.Symbol for i in sorted_by_market_cap[-quintile:]]
self.short_symbols = [i.Symbol for i in sorted_by_market_cap[:quintile]]
return self.long_symbols + self.short_symbols
def OnData(self, slice: Slice) -> None:
if not self.selection_flag:
return
self.selection_flag = False
# Trade execution - Leveraged portfolio - 100% long, 100% short
targets: List[PortfolioTarget] = []
for i, portfolio in enumerate([self.long_symbols, self.short_symbols]):
for symbol in portfolio:
if slice.ContainsKey(symbol) and slice[symbol] is not None:
targets.append(PortfolioTarget(symbol, ((-1) ** i) / len(portfolio)))
self.SetHoldings(targets, True)
self.long_symbols.clear()
self.short_symbols.clear()
def Selection(self) -> None:
if self.Time.month == self.rebalancing_month:
self.selection_flag = True
def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters: OrderFeeParameters) -> OrderFee:
fee: float = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))