Overall Statistics |
Total Orders
17127
Average Win
0.12%
Average Loss
-0.06%
Compounding Annual Return
5.272%
Drawdown
51.600%
Expectancy
0.350
Start Equity
100000
End Equity
352415.37
Net Profit
252.415%
Sharpe Ratio
0.166
Sortino Ratio
0.222
Probabilistic Sharpe Ratio
0.000%
Loss Rate
56%
Win Rate
44%
Profit-Loss Ratio
2.08
Alpha
0.032
Beta
-0.131
Annual Standard Deviation
0.161
Annual Variance
0.026
Information Ratio
-0.066
Tracking Error
0.24
Treynor Ratio
-0.203
Total Fees
$556.87
Estimated Strategy Capacity
$8000.00
Lowest Capacity Asset
IVCB XVQ0TDUA32AT
Portfolio Turnover
0.43%
|
# https://quantpedia.com/strategies/small-capitalization-stocks-premium-anomaly/ # # The investment universe contains all NYSE, AMEX, and NASDAQ stocks. Decile portfolios are formed based on the market capitalization # of stocks. To capture “size” effect, SMB portfolio goes long small stocks (lowest decile) and short big stocks (highest decile). # # QC implementation changes: # - The investment universe contains 3000 largest stocks traded on NYSE, AMEX, and NASDAQ. from AlgorithmImports import * from typing import List class SizeFactorSmallCapitalizationStocksPremium(QCAlgorithm): def Initialize(self) -> None: self.SetStartDate(2000, 1, 1) self.SetCash(100_000) self.UniverseSettings.Leverage = 5 self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.FundamentalFunction) self.Settings.MinimumOrderMarginPortfolioPercentage = 0.0 self.long_symbols: List[Symbol] = [] self.short_symbols: List[Symbol] = [] # Fundamental Filter Parameters self.exchange_codes: List[str] = ['NYS', 'NAS', 'ASE'] self.fundamentals_count: int = 3_000 self.quantile: int = 10 self.rebalancing_month: int = 12 self.selection_flag: bool = True exchange: Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol self.Schedule.On(self.DateRules.MonthEnd(exchange), self.TimeRules.AfterMarketOpen(exchange), self.Selection) def FundamentalFunction(self, fundamental: List[Fundamental]) -> List[Symbol]: if not self.selection_flag: return Universe.Unchanged filtered: List[Fundamental] = [f for f in fundamental if f.HasFundamentalData and f.SecurityReference.ExchangeId in self.exchange_codes] sorted_by_market_cap: List[Fundamental] = sorted(filtered, key = lambda x: x.MarketCap, reverse=True)[:self.fundamentals_count] if len(sorted_by_market_cap) >= self.quantile: quintile: int = int(len(sorted_by_market_cap) / self.quantile) self.long_symbols = [i.Symbol for i in sorted_by_market_cap[-quintile:]] self.short_symbols = [i.Symbol for i in sorted_by_market_cap[:quintile]] return self.long_symbols + self.short_symbols def OnData(self, slice: Slice) -> None: if not self.selection_flag: return self.selection_flag = False # Trade execution - Leveraged portfolio - 100% long, 100% short targets: List[PortfolioTarget] = [] for i, portfolio in enumerate([self.long_symbols, self.short_symbols]): for symbol in portfolio: if slice.ContainsKey(symbol) and slice[symbol] is not None: targets.append(PortfolioTarget(symbol, ((-1) ** i) / len(portfolio))) self.SetHoldings(targets, True) self.long_symbols.clear() self.short_symbols.clear() def Selection(self) -> None: if self.Time.month == self.rebalancing_month: self.selection_flag = True def OnSecuritiesChanged(self, changes: SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(CustomFeeModel()) # Custom fee model class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters: OrderFeeParameters) -> OrderFee: fee: float = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))