| Overall Statistics |
|
Total Trades
17
Average Win
3.60%
Average Loss
-8.74%
Compounding Annual Return
6.922%
Drawdown
50.300%
Expectancy
-0.117
Net Profit
324.344%
Sharpe Ratio
0.446
Probabilistic Sharpe Ratio
0.179%
Loss Rate
38%
Win Rate
62%
Profit-Loss Ratio
0.41
Alpha
0.074
Beta
-0.075
Annual Standard Deviation
0.153
Annual Variance
0.023
Information Ratio
-0.023
Tracking Error
0.242
Treynor Ratio
-0.916
Total Fees
$92.32
Estimated Strategy Capacity
$320000000.00
Lowest Capacity Asset
SPY R735QTJ8XC9X
|
# https://quantpedia.com/strategies/fed-model/
#
# Each month, the investor conducts a one-month predictive regression (using all available data up to that date) predicting excess stock market
# returns using the yield gap as an independent variable. The “Yield gap” is calculated as YG = EY − y, with earnings yield EY ≡ ln (1 ++ E/P)
# and y = ln (1 ++ Y) is the log 10 year Treasury bond yield. Then, the strategy allocates 100% in the risky asset if the forecasted excess
# returns are positive, and otherwise, it invests 100% in the risk-free rate.
from collections import deque
import numpy as np
from scipy import stats
class FEDModel(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
# Monthly price data and yield gap data.
self.data = {}
self.period = 12 * 21
self.SetWarmUp(self.period)
self.market = self.AddEquity('SPY', Resolution.Daily).Symbol
self.data[self.market] = deque()
self.cash = 'SHY'
self.AddEquity(self.cash, Resolution.Daily)
# Risk free rate.
self.risk_free_rate = self.AddData(QuandlValue, 'FRED/DGS3MO', Resolution.Daily).Symbol
# 10Y bond yield symbol.
self.bond_yield = 'US10YT'
self.AddData(QuantpediaBondYield, self.bond_yield, Resolution.Daily)
# SP500 earnings yield data.
self.sp_earnings_yield = 'MULTPL/SP500_EARNINGS_YIELD_MONTH'
self.AddData(QuandlValue, self.sp_earnings_yield, Resolution.Daily)
self.data['yield_gap'] = deque()
self.Schedule.On(self.DateRules.MonthStart(self.market), self.TimeRules.AfterMarketOpen(self.market), self.Rebalance)
def OnData(self, data):
# Update market price data.
if self.market in data and self.risk_free_rate in data and self.bond_yield in data and self.sp_earnings_yield in data:
if data[self.market] and data[self.risk_free_rate] and data[self.bond_yield] and data[self.sp_earnings_yield]:
market_price = data[self.market].Value
rf_rate = data[self.risk_free_rate].Value
bond_yield = data[self.bond_yield].Value
sp_ey = data[self.sp_earnings_yield].Value
if market_price != 0 and rf_rate != 0 and bond_yield != 0 and sp_ey != 0:
self.data[self.market].append((market_price, rf_rate))
yield_gap = np.log(sp_ey) - np.log(bond_yield)
self.data['yield_gap'].append(yield_gap)
def Rebalance(self):
# Ensure minimum data points to calculate regression.
min_count = 6
if len(self.data[self.market]) >= min_count:
market_closes = np.array([x[0] for x in self.data[self.market]])
market_returns = (market_closes[1:] - market_closes[:-1]) / market_closes[:-1]
rf_rates = np.array([x[1] for x in self.data[self.market]][1:])
excess_returns = market_returns - rf_rates
yield_gaps = [x for x in self.data['yield_gap']]
# Linear regression calc.
# Y = α + (β ∗ X)
# intercept = alpha
# slope = beta
beta, alpha, r_value, p_value, std_err = stats.linregress(yield_gaps[1:-1], market_returns[1:])
X = yield_gaps[-1]
# Predicted market return.
Y = alpha + (beta * X)
# Trade execution / rebalance.
if Y > 0:
if self.Portfolio[self.cash].Invested:
self.Liquidate(self.cash)
self.SetHoldings(self.market, 1)
else:
if self.Portfolio[self.market].Invested:
self.Liquidate(self.market)
self.SetHoldings(self.cash, 1)
# Quantpedia bond yield data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaBondYield(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/bond_yield/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaBondYield()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(',')
data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1)
data['yield'] = float(split[1])
data.Value = float(split[1])
return data
# Quandl "value" data
class QuandlValue(PythonQuandl):
def __init__(self):
self.ValueColumnName = 'Value'