| Overall Statistics |
|
Total Orders
15817
Average Win
0.65%
Average Loss
-0.64%
Compounding Annual Return
-11.143%
Drawdown
91.300%
Expectancy
-0.029
Start Equity
100000
End Equity
15589.66
Net Profit
-84.410%
Sharpe Ratio
-0.395
Sortino Ratio
-0.328
Probabilistic Sharpe Ratio
0.000%
Loss Rate
52%
Win Rate
48%
Profit-Loss Ratio
1.01
Alpha
-0.077
Beta
0.008
Annual Standard Deviation
0.194
Annual Variance
0.037
Information Ratio
-0.703
Tracking Error
0.243
Treynor Ratio
-10.168
Total Fees
$4199.97
Estimated Strategy Capacity
$12000.00
Lowest Capacity Asset
SJ XEEQU7AFNHPH
Portfolio Turnover
27.41%
|
from AlgorithmImports import *
import numpy as np
from typing import List, Dict, Deque
from collections import deque
from scipy.optimize import minimize
class SymbolData:
def __init__(self, period: int) -> None:
self.closes: Deque = deque(maxlen=period)
self.times: Deque = deque(maxlen=period)
def update(self, time: datetime, close: float) -> None:
self.times.append(time)
self.closes.append(close)
def is_ready(self) -> bool:
return len(self.closes) == self.closes.maxlen and len(self.times) == self.times.maxlen
def get_prices(self, list_period: List[datetime.date]) -> float:
return_prices: List[float] = []
for time, close in zip(self.times, self.closes):
if time in list_period:
return_prices.append(close)
# check if there are enough data for performance calculation
if len(return_prices) < 2:
return None
return (return_prices[-1] - return_prices[0]) / return_prices[0]
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters: OrderFeeParameters) -> OrderFee:
fee: float = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# NOTE: Manager for new trades. It's represented by certain count of equally weighted brackets for long and short positions.
# If there's a place for new trade, it will be managed for time of holding period.
class TradeManager():
def __init__(self, algorithm: QCAlgorithm, long_size: int, short_size: int, holding_period: int) -> None:
self.algorithm: QCAlgorithm = algorithm # algorithm to execute orders in.
self.long_size: int = long_size
self.short_size: int = short_size
self.long_len: int = 0
self.short_len: int = 0
# Arrays of ManagedSymbols
self.symbols: List[Symbol] = []
self.holding_period: int = holding_period # Days of holding.
# Add stock symbol object
def Add(self, symbol: Symbol, long_flag: bool) -> None:
# Open new long trade.
managed_symbol: ManagedSymbol = ManagedSymbol(symbol, self.holding_period, long_flag)
if long_flag:
# If there's a place for it.
if self.long_len < self.long_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, 1 / self.long_size)
self.long_len += 1
else:
self.algorithm.Log("There's not place for additional trade.")
# Open new short trade.
else:
# If there's a place for it.
if self.short_len < self.short_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, - 1 / self.short_size)
self.short_len += 1
else:
self.algorithm.Log("There's not place for additional trade.")
# Decrement holding period and liquidate symbols.
def TryLiquidate(self) -> None:
symbols_to_delete: List[ManagedSymbol] = []
for managed_symbol in self.symbols:
managed_symbol.days_to_liquidate -= 1
# Liquidate.
if managed_symbol.days_to_liquidate == 0:
symbols_to_delete.append(managed_symbol)
self.algorithm.Liquidate(managed_symbol.symbol)
if managed_symbol.long_flag: self.long_len -= 1
else: self.short_len -= 1
# Remove symbols from management.
for managed_symbol in symbols_to_delete:
self.symbols.remove(managed_symbol)
def LiquidateTicker(self, ticker: str) -> None:
symbol_to_delete: Union[None, ManagedSymbol] = None
for managed_symbol in self.symbols:
if managed_symbol.symbol.Value == ticker:
self.algorithm.Liquidate(managed_symbol.symbol)
symbol_to_delete = managed_symbol
if managed_symbol.long_flag: self.long_len -= 1
else: self.short_len -= 1
break
if symbol_to_delete: self.symbols.remove(symbol_to_delete)
else: self.algorithm.Debug("Ticker is not held in portfolio!")
class ManagedSymbol():
def __init__(self, symbol: Symbol, days_to_liquidate: int, long_flag: bool) -> None:
self.symbol: Symbol = symbol
self.days_to_liquidate: int = days_to_liquidate
self.long_flag: bool = long_flag
# https://quantpedia.com/strategies/reversal-in-post-earnings-announcement-drift/
#
# The investment universe consists of all stocks from NYSE, AMEX, and NASDAQ with active options market (so mostly large-cap stocks).
# Each day investor selects stocks which would have earnings announcement during the next working day. He then checks the abnormal
# performance of these stocks during the previous earnings announcement. Investor goes long decile of stocks with the lowest abnormal
# past earnings announcement performance and goes short stocks with the highest abnormal past performance. Stocks are held for two
# days, and the portfolio is weighted equally.
#
# QC Implementation changes:
# - Universe consist of stock, which have earnings dates in Quantpedia data.
from data_tools import SymbolData, CustomFeeModel, TradeManager
from AlgorithmImports import *
import numpy as np
from collections import deque
from typing import Dict, List
from pandas.core.frame import DataFrame
from pandas.tseries.offsets import BDay
from dateutil.relativedelta import relativedelta
class ReversalPostEarningsAnnouncementDrift(QCAlgorithm):
def Initialize(self) -> None:
self.SetStartDate(2009, 1, 1) # earnings dates starts in 2010
self.SetCash(100_000)
self.long_symbols: int = 10
self.short_symbols: int = 10
self.holding_period: int = 2
self.lookback_period: int = 3
self.leverage: int = 5
self.ear_period: int = 30
self.prev_month_year: int = -1
self.prev_month: int = -1
self.percentiles: List[int] = [10, 90]
self.data: Dict[Symbol, SymbolData] = {}
# EAR last quarter data
self.ear_data: Dict[Symbol, List[datetime.date, float]] = {}
self.earnings_data: Dict[datetime.date, List[str]] = {}
self.eps_data: Dict[int, Dict[int, Dict[str, Dict[datetime.date, float]]]] = {}
self.first_date: Union[datetime.date, None] = None
earnings_data: str = self.Download('data.quantpedia.com/backtesting_data/economic/earnings_dates_eps.json')
earnings_data_json: List[dict] = json.loads(earnings_data)
for obj in earnings_data_json:
date: datetime.date = datetime.strptime(obj['date'], '%Y-%m-%d').date()
year: int = date.year
month: int = date.month
self.earnings_data[date] = []
if not self.first_date: self.first_date = date
for stock_data in obj['stocks']:
ticker: str = stock_data['ticker']
self.earnings_data[date].append(ticker)
if stock_data['eps'] == '':
continue
if year not in self.eps_data:
self.eps_data[year] = {}
if month not in self.eps_data[year]:
self.eps_data[year][month] = {}
if ticker not in self.eps_data[year][month]:
self.eps_data[year][month][ticker] = {}
self.eps_data[year][month][ticker][date] = float(stock_data['eps'])
# EAR quarters history
self.current_quarter_ears: List[float] = []
self.previous_quarter_ears: List[float] = []
# equally weighted brackets for traded symbols - 10 symbols long and short, 2 days of holding
self.trade_manager: TradeManager = TradeManager(self, self.long_symbols, self.short_symbols, self.holding_period)
self.symbol: Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.selection_flag: bool = False
self.store_sales_data_flag: bool = True
self.sales_growth_sort_flag: bool = False
self.Settings.MinimumOrderMarginPortfolioPercentage = 0.
self.settings.daily_precise_end_time = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.FundamentalSelectionFunction)
self.Schedule.On(self.DateRules.MonthStart(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(self.leverage)
def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]:
# update daily prices
for stock in fundamental:
symbol: Symbol = stock.Symbol
if symbol in self.data:
self.data[symbol].update(self.Time, stock.AdjustedPrice)
# monthly selection
if not self.selection_flag:
return Universe.Unchanged
self.selection_flag = False
prev_month_date: datetime.date = (self.Time - relativedelta(months=1)).date()
self.prev_month_year: int = prev_month_date.year
self.prev_month: int = prev_month_date.month
if self.prev_month_year not in self.eps_data or self.prev_month not in self.eps_data[self.prev_month_year]:
return Universe.Unchanged
# select every stock, which had earnings in previous month
stocks_with_prev_month_eps: Dict[str, Dict[datetime.date, float]] = self.eps_data[self.prev_month_year][self.prev_month]
selected_symbols: List[Symbol] = [x.Symbol for x in fundamental if x.Symbol.Value in stocks_with_prev_month_eps]
for symbol in selected_symbols + [self.symbol]:
if symbol not in self.data:
# warm up stock prices
self.data[symbol] = SymbolData(self.ear_period)
history: DataFrame = self.History(symbol, self.ear_period, Resolution.Daily)
if history.empty:
continue
closes: Series = history.loc[symbol].close
for time, close in closes.items():
self.data[symbol].update(self.Time, close)
for symbol in selected_symbols:
if not self.data[symbol].is_ready():
continue
ticker: str = symbol.Value
# get all stock's eps from previous month
stock_prev_month_eps: Dict[datetime.date, float] = self.eps_data[self.prev_month_year][self.prev_month][ticker]
# get the date of the latest eps in previous month
stock_latest_eps_date: datetime.date = list(stock_prev_month_eps.keys())[-1]
# get 4 days around earnings and calculate EAR
date_from: datetime = stock_latest_eps_date - BDay(2)
date_to: datetime = stock_latest_eps_date + BDay(1)
market_return: float = self.data[self.symbol].get_prices([date_from, date_to])
stock_return: float = self.data[symbol].get_prices([date_from, date_to])
# check if returns are ready
if market_return and stock_return:
ear: float = stock_return - market_return
ear_data: List[datetime.date] = (stock_latest_eps_date, ear)
self.ear_data[symbol] = ear_data
# store ear in this month's history
self.current_quarter_ears.append(ear)
# check if there are any symbols, which can be traded
if len(self.ear_data) == 0:
return Universe.Unchanged
# return symbols from self.ear_data, because they will be traded
return list(self.ear_data.keys())
def OnData(self, data: Slice) -> None:
# open trades on earnings day
date_to_lookup: datetime.date = self.Time.date()
# if there is no earnings data yet
if date_to_lookup < self.first_date:
return
# liquidate opened symbols after holding period
self.trade_manager.TryLiquidate()
# wait until we have history data for previous three months
if len(self.previous_quarter_ears) == 0:
return
ear_values: List[float] = [x for x in self.previous_quarter_ears]
top_ear_decile: float = np.percentile(ear_values, self.percentiles[1])
bottom_ear_decile: float = np.percentile(ear_values, self.percentiles[0])
# Open new trades.
if date_to_lookup in self.earnings_data:
symbols_to_trade: List[Symbol] = [symbol for symbol in self.ear_data if symbol.Value in self.earnings_data[date_to_lookup]]
symbols_to_delete: List[Symbol] = []
for symbol in symbols_to_trade:
# last earnings was less than three months ago
last_earnings_date: datetime.date = self.ear_data[symbol][0]
if last_earnings_date >= (self.Time - relativedelta(months=self.lookback_period)).date():
if symbol in data and data[symbol]:
if self.ear_data[symbol][1] >= top_ear_decile:
self.trade_manager.Add(symbol, True)
symbols_to_delete.append(symbol)
elif self.ear_data[symbol][1] <= bottom_ear_decile:
self.trade_manager.Add(symbol, False)
symbols_to_delete.append(symbol)
# delete already traded symbols from symbol to trade
for symbol in symbols_to_delete:
del self.ear_data[symbol]
def Selection(self) -> None:
self.selection_flag = True
if self.Time.month % 3 == 0:
# store previous quarter's history
self.previous_quarter_ears = [x for x in self.current_quarter_ears]
self.current_quarter_ears.clear()