| Overall Statistics |
|
Total Trades
2080
Average Win
0.07%
Average Loss
-0.06%
Compounding Annual Return
0.783%
Drawdown
26.000%
Expectancy
0.365
Net Profit
19.823%
Sharpe Ratio
0.122
Probabilistic Sharpe Ratio
0.000%
Loss Rate
39%
Win Rate
61%
Profit-Loss Ratio
1.23
Alpha
0.002
Beta
0.091
Annual Standard Deviation
0.058
Annual Variance
0.003
Information Ratio
-0.315
Tracking Error
0.158
Treynor Ratio
0.078
Total Fees
$74.74
Estimated Strategy Capacity
$0
Lowest Capacity Asset
CME_AD1.QuantpediaFutures 2S
|
# https://quantpedia.com/strategies/dollar-carry-trade/
#
# The investment universe consists of currencies from developed countries (the Euro area, Australia, Canada, Denmark, Japan, New Zealand, Norway, Sweden,
# Switzerland, and the United Kingdom). The average forward discount (AFD) is calculated for this basket of currencies (each currency has an equal weight).
# The average 3-month rate could be used instead of the AFD in the calculation. The AFD is then compared to the 3-month US Treasury rate. The investor
# goes long on the US dollar and goes short on the basket of currencies if the 3-month US Treasury rate is higher than the AFD. The investor goes short
# on the US dollar and long on the basket of currencies if the 3-month US Treasury rate is higher than the AFD. The portfolio is rebalanced monthly.
import numpy as np
from AlgorithmImports import *
class DollarCarryTrade(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbols = {
"CME_AD1" : "OECD/KEI_IR3TIB01_AUS_ST_M", # Australian Dollar Futures, Continuous Contract #1
"CME_BP1" : "OECD/KEI_IR3TIB01_GBR_ST_M", # British Pound Futures, Continuous Contract #1
"CME_CD1" : "OECD/KEI_IR3TIB01_CAN_ST_M", # Canadian Dollar Futures, Continuous Contract #1
"CME_EC1" : "OECD/KEI_IR3TIB01_EA19_ST_M",# Euro FX Futures, Continuous Contract #1
"CME_JY1" : "OECD/KEI_IR3TIB01_JPN_ST_M", # Japanese Yen Futures, Continuous Contract #1
"CME_MP1" : "OECD/KEI_IR3TIB01_MEX_ST_M", # Mexican Peso Futures, Continuous Contract #1
"CME_NE1" : "OECD/KEI_IR3TIB01_NZL_ST_M", # New Zealand Dollar Futures, Continuous Contract #1
"CME_SF1" : "SNB/ZIMOMA" # Swiss Franc Futures, Continuous Contract #1
}
for symbol in self.symbols:
data = self.AddData(QuantpediaFutures, symbol, Resolution.Daily)
data.SetFeeModel(CustomFeeModel())
data.SetLeverage(5)
# Interbank rate data.
cash_rate_symbol = self.symbols[symbol]
self.AddData(QuandlValue, cash_rate_symbol, Resolution.Daily)
self.treasury_rate = self.AddData(QuandlValue, 'FRED/DGS3MO', Resolution.Daily).Symbol
def OnData(self, data):
fd = {}
for future_symbol, cash_rate_symbol in self.symbols.items():
if cash_rate_symbol in data and data[cash_rate_symbol]:
if self.Securities[future_symbol].GetLastData() and (self.Time.date() - self.Securities[future_symbol].GetLastData().Time.date()).days < 5:
cash_rate = data[cash_rate_symbol].Value
# Update cash rate only once a month.
fd[future_symbol] = cash_rate
if len(fd) == 0: return
afd = np.mean([x[1] for x in fd.items()])
if self.Securities[self.treasury_rate].GetLastData() and (self.Time.date() - self.Securities[self.treasury_rate].GetLastData().Time.date()).days < 5:
treasuries_3m_rate = self.Securities[self.treasury_rate].Price
count = len(self.symbols)
if treasuries_3m_rate > afd:
# Long on the US dollar and goes short on the basket of currencies.
for symbol in self.symbols:
self.SetHoldings(symbol, -1 / count)
else:
# Short on the US dollar and long on the basket of currencies.
for symbol in self.symbols:
self.SetHoldings(symbol, 1 / count)
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
return data
# Quandl "value" data
class QuandlValue(PythonQuandl):
def __init__(self):
self.ValueColumnName = 'Value'
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))