| Overall Statistics |
|
Total Trades
10182
Average Win
0.12%
Average Loss
-0.16%
Compounding Annual Return
7.644%
Drawdown
20.000%
Expectancy
0.169
Net Profit
352.086%
Sharpe Ratio
0.793
Probabilistic Sharpe Ratio
12.428%
Loss Rate
34%
Win Rate
66%
Profit-Loss Ratio
0.78
Alpha
0.066
Beta
0
Annual Standard Deviation
0.083
Annual Variance
0.007
Information Ratio
0.016
Tracking Error
0.197
Treynor Ratio
-139.807
Total Fees
$7891.40
|
import numpy as np
from scipy.optimize import minimize
sp100_stocks = ['AAPL','MSFT','AMZN','FB','BRKB','GOOGL','GOOG','JPM','JNJ','V','PG','XOM','UNH','BAC','MA','T','DIS','INTC','HD','VZ','MRK','PFE','CVX','KO','CMCSA','CSCO','PEP','WFC','C','BA','ADBE','WMT','CRM','MCD','MDT','BMY','ABT','NVDA','NFLX','AMGN','PM','PYPL','TMO','COST','ABBV','ACN','HON','NKE','UNP','UTX','NEE','IBM','TXN','AVGO','LLY','ORCL','LIN','SBUX','AMT','LMT','GE','MMM','DHR','QCOM','CVS','MO','LOW','FIS','AXP','BKNG','UPS','GILD','CHTR','CAT','MDLZ','GS','USB','CI','ANTM','BDX','TJX','ADP','TFC','CME','SPGI','COP','INTU','ISRG','CB','SO','D','FISV','PNC','DUK','SYK','ZTS','MS','RTN','AGN','BLK']
def MonthDiff(d1, d2):
return (d1.year - d2.year) * 12 + d1.month - d2.month
def Return(values):
return (values[-1] - values[0]) / values[0]
def Volatility(values):
values = np.array(values)
returns = (values[1:] - values[:-1]) / values[:-1]
return np.std(returns)
def GetFutureMulitpliers(algorithm):
symbol_multiplier = {}
csv_string_file = algorithm.Download('data.quantpedia.com/backtesting_data/futures/contract_multiplier.csv')
mulitpliers_lines = csv_string_file.split('\r\n')
for line in mulitpliers_lines:
symbol, multiplier = line.split(';')
symbol_multiplier[symbol] = float(multiplier)
return symbol_multiplier
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# Quandl free data.
class QuandlFutures(PythonQuandl):
def __init__(self):
self.ValueColumnName = "settle"
# Quandl short interest data.
class QuandlFINRA_ShortVolume(PythonQuandl):
def __init__(self):
self.ValueColumnName = 'SHORTVOLUME' # also 'TOTALVOLUME' is accesible
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
return data
# NOTE: Manager for new trades. It's represented by certain count of equally weighted brackets for long and short positions.
# If there's a place for new trade, it will be managed for time of holding period.
class TradeManager():
def __init__(self, algorithm, long_size, short_size, holding_period):
self.algorithm = algorithm # algorithm to execute orders in.
self.long_size = long_size
self.short_size = short_size
self.weight = 1 / (self.long_size + self.short_size)
self.long_len = 0
self.short_len = 0
# Arrays of ManagedSymbols
self.symbols = []
self.holding_period = holding_period # Days of holding.
# Add stock symbol object
def Add(self, symbol, long_flag):
# Open new long trade.
managed_symbol = ManagedSymbol(symbol, self.holding_period, long_flag)
if long_flag:
# If there's a place for it.
if self.long_len < self.long_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, self.weight)
self.long_len += 1
else:
self.algorithm.Log("There's not place for additional trade.")
# Open new short trade.
else:
# If there's a place for it.
if self.short_len < self.short_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, - self.weight)
self.short_len += 1
else:
self.algorithm.Log("There's not place for additional trade.")
# Decrement holding period and liquidate symbols.
def TryLiquidate(self):
symbols_to_delete = []
for managed_symbol in self.symbols:
managed_symbol.days_to_liquidate -= 1
# Liquidate.
if managed_symbol.days_to_liquidate == 0:
symbols_to_delete.append(managed_symbol)
self.algorithm.Liquidate(managed_symbol.symbol)
if managed_symbol.long_flag: self.long_len -= 1
else: self.short_len -= 1
# Remove symbols from management.
for managed_symbol in symbols_to_delete:
self.symbols.remove(managed_symbol)
def LiquidateTicker(self, ticker):
symbol_to_delete = None
for managed_symbol in self.symbols:
if managed_symbol.symbol.Value == ticker:
self.algorithm.Liquidate(managed_symbol.symbol)
symbol_to_delete = managed_symbol
if managed_symbol.long_flag: self.long_len -= 1
else: self.short_len -= 1
break
if symbol_to_delete: self.symbols.remove(symbol_to_delete)
else: self.algorithm.Debug("Ticker is not held in portfolio!")
class ManagedSymbol():
def __init__(self, symbol, days_to_liquidate, long_flag):
self.symbol = symbol
self.days_to_liquidate = days_to_liquidate
self.long_flag = long_flag
class PortfolioOptimization(object):
def __init__(self, df_return, risk_free_rate, num_assets):
self.daily_return = df_return
self.risk_free_rate = risk_free_rate
self.n = num_assets # numbers of risk assets in portfolio
self.target_vol = 0.05
def annual_port_return(self, weights):
# calculate the annual return of portfolio
return np.sum(self.daily_return.mean() * weights) * 252
def annual_port_vol(self, weights):
# calculate the annual volatility of portfolio
return np.sqrt(np.dot(weights.T, np.dot(self.daily_return.cov() * 252, weights)))
def min_func(self, weights):
# method 1: maximize sharp ratio
return - self.annual_port_return(weights) / self.annual_port_vol(weights)
# method 2: maximize the return with target volatility
#return - self.annual_port_return(weights) / self.target_vol
def opt_portfolio(self):
# maximize the sharpe ratio to find the optimal weights
cons = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
bnds = tuple((0, 1) for x in range(2)) + tuple((0, 0.25) for x in range(self.n - 2))
opt = minimize(self.min_func, # object function
np.array(self.n * [1. / self.n]), # initial value
method='SLSQP', # optimization method
bounds=bnds, # bounds for variables
constraints=cons) # constraint conditions
opt_weights = opt['x']
return opt_weights
# https://quantpedia.com/strategies/time-series-momentum-effect/
#
# The investment universe consists of 24 commodity futures, 12 cross-currency pairs (with 9 underlying currencies), 9 developed equity indices, and 13 developed
# government bond futures.
# Every month, the investor considers whether the excess return of each asset over the past 12 months is positive or negative and goes long on the contract if it is
# positive and short if negative. The position size is set to be inversely proportional to the instrument’s volatility. A univariate GARCH model is used to estimated
# ex-ante volatility in the source paper. However, other simple models could probably be easily used with good results (for example, the easiest one would be using
# historical volatility instead of estimated volatility). The portfolio is rebalanced monthly.
from collections import deque
import fk_tools
from math import sqrt
class TimeSeriesMomentum(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbols = [
"CME_S1", # Soybean Futures, Continuous Contract
"CME_W1", # Wheat Futures, Continuous Contract
"CME_SM1", # Soybean Meal Futures, Continuous Contract
"CME_BO1", # Soybean Oil Futures, Continuous Contract
"CME_C1", # Corn Futures, Continuous Contract
"CME_O1", # Oats Futures, Continuous Contract
"CME_LC1", # Live Cattle Futures, Continuous Contract
"CME_FC1", # Feeder Cattle Futures, Continuous Contract
"CME_LN1", # Lean Hog Futures, Continuous Contract
"CME_GC1", # Gold Futures, Continuous Contract
"CME_SI1", # Silver Futures, Continuous Contract
"CME_PL1", # Platinum Futures, Continuous Contract
"CME_CL1", # Crude Oil Futures, Continuous Contract
"CME_HG1", # Copper Futures, Continuous Contract
"CME_LB1", # Random Length Lumber Futures, Continuous Contract
"CME_NG1", # Natural Gas (Henry Hub) Physical Futures, Continuous Contract
"CME_PA1", # Palladium Futures, Continuous Contract
"CME_RR1", # Rough Rice Futures, Continuous Contract
"CME_CU1", # Chicago Ethanol (Platts) Futures
"CME_DA1", # Class III Milk Futures
"ICE_CC1", # Cocoa Futures, Continuous Contract
"ICE_CT1", # Cotton No. 2 Futures, Continuous Contract
"ICE_KC1", # Coffee C Futures, Continuous Contract
"ICE_O1", # Heating Oil Futures, Continuous Contract
"ICE_OJ1", # Orange Juice Futures, Continuous Contract
"ICE_SB1", # Sugar No. 11 Futures, Continuous Contract
"CME_AD1", # Australian Dollar Futures, Continuous Contract #1
"CME_BP1", # British Pound Futures, Continuous Contract #1
"CME_CD1", # Canadian Dollar Futures, Continuous Contract #1
"CME_EC1", # Euro FX Futures, Continuous Contract #1
"CME_JY1", # Japanese Yen Futures, Continuous Contract #1
"CME_MP1", # Mexican Peso Futures, Continuous Contract #1
"CME_NE1", # New Zealand Dollar Futures, Continuous Contract #1
"CME_SF1", # Swiss Franc Futures, Continuous Contract #1
"ICE_DX1", # US Dollar Index Futures, Continuous Contract #1
"CME_NQ1", # E-mini NASDAQ 100 Futures, Continuous Contract #1
"EUREX_FDAX1", # DAX Futures, Continuous Contract #1
"CME_ES1", # E-mini S&P 500 Futures, Continuous Contract #1
"EUREX_FSMI1", # SMI Futures, Continuous Contract #1
"EUREX_FSTX1", # STOXX Europe 50 Index Futures, Continuous Contract #1
"LIFFE_FCE1", # CAC40 Index Futures, Continuous Contract #1
"LIFFE_Z1", # FTSE 100 Index Futures, Continuous Contract #1
"SGX_NK1", # SGX Nikkei 225 Index Futures, Continuous Contract #1
"CME_MD1", # E-mini S&P MidCap 400 Futures
"CME_TY1", # 10 Yr Note Futures, Continuous Contract #1
"CME_FV1", # 5 Yr Note Futures, Continuous Contract #1
"CME_TU1", # 2 Yr Note Futures, Continuous Contract #1
"ASX_XT1", # 10 Year Commonwealth Treasury Bond Futures, Continuous Contract #1 # 'Settlement price' instead of 'settle' on quandl.
"ASX_YT1", # 3 Year Commonwealth Treasury Bond Futures, Continuous Contract #1 # 'Settlement price' instead of 'settle' on quandl.
"EUREX_FGBL1", # Euro-Bund (10Y) Futures, Continuous Contract #1
"EUREX_FBTP1", # Long-Term Euro-BTP Futures, Continuous Contract #1
"EUREX_FGBM1", # Euro-Bobl Futures, Continuous Contract #1
"EUREX_FGBS1", # Euro-Schatz Futures, Continuous Contract #1
"SGX_JB1", # SGX 10-Year Mini Japanese Government Bond Futures
"LIFFE_R1" # Long Gilt Futures, Continuous Contract #1
"MX_CGB1", # Ten-Year Government of Canada Bond Futures, Continuous Contract #1 # 'Settlement price' instead of 'settle' on quandl.
]
self.period = 12 * 21
self.SetWarmUp(self.period)
self.targeted_volatility = 0.10
# Daily rolled data.
self.data = {}
for symbol in self.symbols:
data = None
# Back adjusted and spliced data import.
data = self.AddData(fk_tools.QuantpediaFutures, symbol, Resolution.Daily)
data.SetFeeModel(fk_tools.CustomFeeModel(self))
data.SetLeverage(20)
self.data[symbol] = deque(maxlen=self.period)
self.Schedule.On(self.DateRules.MonthStart(self.symbols[0]), self.TimeRules.AfterMarketOpen(self.symbols[0]), self.Rebalance)
def OnData(self, data):
# Store daily data.
for symbol in self.symbols:
if self.Securities.ContainsKey(symbol):
price = self.Securities[symbol].Price
if price != 0:
self.data[symbol].append(price)
else:
# Append latest price as a next one in case there's 0 as price.
if len(self.data[symbol]) > 0:
last_price = self.data[symbol][-1]
self.data[symbol].append(last_price)
def Rebalance(self):
# Performance / volatility data.
performance_volatility = {}
for symbol in self.symbols:
if len(self.data[symbol]) == self.data[symbol].maxlen:
back_adjusted_prices = [x for x in self.data[symbol]]
performance = fk_tools.Return(back_adjusted_prices)
back_adjusted_prices = back_adjusted_prices[-21:]
volatility_1M = fk_tools.Volatility(back_adjusted_prices)
performance_volatility[symbol] = [performance, volatility_1M]
if len(performance_volatility) == 0: return
# Performance sorting.
long = [x for x in performance_volatility.items() if x[1][0] > 0]
short = [x for x in performance_volatility.items() if x[1][0] < 0]
# Volatility weighting.
total_volatility_inversed = sum([(1 / x[1][1]) for x in long + short])
if total_volatility_inversed == 0: return
# count = len(long + short)
count = len(long + short) * 2
# Volatility targeting.
portfolio_volatility = sum([((x[1][1]) / count) for x in long + short]) * sqrt(252)
volatility_target_leverage = 2 * self.targeted_volatility / portfolio_volatility
long_symbols = [x[0] for x in long]
short_symbols = [x[0] for x in short]
weight = {}
for symbol_data in long + short:
symbol = symbol_data[0]
volatility = symbol_data[1][1]
if volatility != 0:
# 2x leverage - 100% long / 100% short.
final_leverage = 2.0 * volatility_target_leverage
# self.Log(f"Leverage: {final_leverage}")
if symbol in long_symbols:
weight[symbol] = (final_leverage / volatility) / total_volatility_inversed
else:
weight[symbol] = - (final_leverage / volatility) / total_volatility_inversed
else:
weight[symbol] = 0
# Trade execution.
invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long_symbols + short_symbols:
self.Liquidate(symbol)
for symbol, w in weight.items():
self.SetHoldings(symbol, w)