| Overall Statistics |
|
Total Orders
29248
Average Win
0.16%
Average Loss
-0.13%
Compounding Annual Return
-1.704%
Drawdown
54.300%
Expectancy
-0.010
Start Equity
100000
End Equity
64682.56
Net Profit
-35.317%
Sharpe Ratio
-0.268
Sortino Ratio
-0.277
Probabilistic Sharpe Ratio
0.000%
Loss Rate
55%
Win Rate
45%
Profit-Loss Ratio
1.20
Alpha
-0.029
Beta
0.002
Annual Standard Deviation
0.108
Annual Variance
0.012
Information Ratio
-0.361
Tracking Error
0.192
Treynor Ratio
-12.144
Total Fees
$3365.44
Estimated Strategy Capacity
$2000000000.00
Lowest Capacity Asset
GPS R735QTJ8XC9X
Portfolio Turnover
8.20%
|
# https://quantpedia.com/strategies/earnings-announcement-premium/
#
# The investment universe consists of all stocks from the CRSP database. At the beginning of every calendar month, stocks are ranked in ascending
# order on the basis of the volume concentration ratio, which is defined as the volume of the previous 16 announcement months divided by the total
# volume in the previous 48 months. The ranked stocks are assigned to one of 5 quintile portfolios. Within each quintile, stocks are assigned to
# one of two portfolios (expected announcers and expected non-announcers) using the predicted announcement based on the previous year. All stocks
# are value-weighted within a given portfolio, and portfolios are rebalanced every calendar month to maintain value weights. The investor invests
# in a long-short portfolio, which is a zero-cost portfolio that holds the portfolio of high volume expected announcers and sells short the
# portfolio of high volume expected non-announcers.
#
# QC implementation changes:
# - The investment universe consists of 1000 most liquid stocks traded on NYSE, AMEX, or NASDAQ.
from collections import deque
from AlgorithmImports import *
from typing import List, Dict, Tuple
class EarningsAnnouncementPremium(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbol:Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.period:int = 21
self.month_period:int = 48
self.leverage:int = 10
self.quantile:int = 5
self.selection_sorting_key = lambda x: x.dollar_volume
# Volume daily data.
self.data:Dict[Symbol, RollingWindow[float]] = {}
# Volume monthly data.
self.monthly_volume:Dict[Symbol, float] = {}
self.fundamental_count:int = 1000
self.weight:Dict[Symbol, float] = {}
self.selection_flag:bool = True
self.Settings.MinimumOrderMarginPortfolioPercentage = 0.
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.FundamentalSelectionFunction)
self.Schedule.On(self.DateRules.MonthStart(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection)
self.settings.daily_precise_end_time = False
def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(self.leverage)
def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]:
# Update the rolling window every day.
for stock in fundamental:
symbol:Symbol = stock.Symbol
# Store monthly price.
if symbol in self.data:
self.data[symbol].Add(stock.Volume)
if not self.selection_flag:
return Universe.Unchanged
selected:List[Fundamental] = [x for x in fundamental if x.HasFundamentalData and x.Market == 'usa' and x.MarketCap != 0 and \
((x.SecurityReference.ExchangeId == "NYS") or (x.SecurityReference.ExchangeId == "NAS") or (x.SecurityReference.ExchangeId == "ASE"))]
if len(selected) > self.fundamental_count:
selected = [x
for x in sorted([x for x in selected], key = self.selection_sorting_key, reverse = True)[:self.fundamental_count]]
fine_symbols:List[Symbol] = [x.Symbol for x in selected]
volume_concentration_ratio:Dict[Fundamental, float] = {}
# Warmup volume rolling windows.
for stock in selected:
symbol:Symbol = stock.Symbol
# Warmup data.
if symbol not in self.data:
self.data[symbol] = RollingWindow[float](self.period)
history:DataFrame = self.History(symbol, self.period, Resolution.Daily)
if history.empty:
self.Debug(f"No history for {symbol} yet")
continue
if 'volume' not in history.columns:
continue
volumes:Series = history.loc[symbol].volume
for _, volume in volumes.items():
self.data[symbol].Add(volume)
# Ratio/market cap pair.
if not self.data[symbol].IsReady:
continue
if symbol not in self.monthly_volume:
self.monthly_volume[symbol] = deque(maxlen = self.month_period)
monthly_vol:float = sum([x for x in self.data[symbol]])
last_month_date:datetime = self.Time - timedelta(days = self.Time.day)
last_file_date:datetime = stock.EarningReports.FileDate.Value # stock annoucement day
was_announcement_month:Tuple[int] = (last_file_date.year == last_month_date.year and last_file_date.month == last_month_date.month) # Last month was announcement date.
self.monthly_volume[symbol].append(VolumeData(last_month_date, monthly_vol, was_announcement_month))
# 48 months of volume data is ready.
if len(self.monthly_volume[symbol]) == self.monthly_volume[symbol].maxlen:
# Volume concentration ratio calc.
announcement_count:int = 12
announcement_volumes:List[float] = [x.Volume for x in self.monthly_volume[symbol] if x.WasAnnouncementMonth][-announcement_count:]
if len(announcement_volumes) == announcement_count:
announcement_months_volume:float = sum(announcement_volumes)
total_volume:float = sum([x.Volume for x in self.monthly_volume[symbol]])
if announcement_months_volume != 0 and total_volume != 0:
# Store ratio, market cap pair.
volume_concentration_ratio[stock] = announcement_months_volume / total_volume
# Volume sorting.
if len(volume_concentration_ratio) > self.quantile:
sorted_by_volume:List[Tuple[Fundamental, float]] = sorted(volume_concentration_ratio.items(), key = lambda x: x[1], reverse=True)
quintile:int = int(len(sorted_by_volume) / self.quantile)
high_volume:List[Fundamental] = [x[0] for x in sorted_by_volume[:quintile]]
# Filering announcers and non-announcers.
month_to_lookup:int = self.Time.month
year_to_lookup:int = self.Time.year - 1
long:List[Fundamental] = []
short:List[Fundamental] = []
for stock in high_volume:
symbol:Symbol = stock.Symbol
announcement_dates:List[List[int]] = [[x.Date.year, x.Date.month] for x in self.monthly_volume[symbol] if x.WasAnnouncementMonth]
if [year_to_lookup, month_to_lookup] in announcement_dates:
long.append(stock)
else:
short.append(stock)
# Delete not updated symbols.
symbols_to_remove:List[Symbol] = []
for symbol in self.monthly_volume:
if symbol not in fine_symbols:
symbols_to_remove.append(symbol)
for symbol in symbols_to_remove:
del self.monthly_volume[symbol]
# Market cap weighting.
for i, portfolio in enumerate([long, short]):
mc_sum:float = sum(list(map(lambda stock: stock.MarketCap , portfolio)))
for stock in portfolio:
self.weight[stock.Symbol] = (((-1)**i) * stock.MarketCap / mc_sum)
return list(self.weight.keys())
def OnData(self, data: Slice) -> None:
if not self.selection_flag:
return
self.selection_flag = False
# Trade execution.
portfolio:List[PortfolioTarget] = [PortfolioTarget(symbol, w) for symbol, w in self.weight.items() if symbol in data and data[symbol]]
self.SetHoldings(portfolio, True)
self.weight.clear()
def Selection(self) -> None:
self.selection_flag = True
# Monthly volume data.
class VolumeData():
def __init__(self, date, monthly_volume, was_announcement_month):
self.Date = date
self.Volume = monthly_volume
self.WasAnnouncementMonth = was_announcement_month
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))