| Overall Statistics |
|
Total Orders
635
Average Win
1.25%
Average Loss
-1.50%
Compounding Annual Return
7.558%
Drawdown
46.300%
Expectancy
0.369
Start Equity
100000
End Equity
634218.55
Net Profit
534.219%
Sharpe Ratio
0.28
Sortino Ratio
0.269
Probabilistic Sharpe Ratio
0.029%
Loss Rate
25%
Win Rate
75%
Profit-Loss Ratio
0.83
Alpha
0.012
Beta
0.68
Annual Standard Deviation
0.14
Annual Variance
0.02
Information Ratio
-0.015
Tracking Error
0.102
Treynor Ratio
0.058
Total Fees
$3387.15
Estimated Strategy Capacity
$77000000.00
Lowest Capacity Asset
XLU RGRPZX100F39
Portfolio Turnover
1.16%
|
# https://quantpedia.com/strategies/sector-momentum-rotational-system/
#
# Use ten sector ETFs. Pick 3 ETFs with the strongest 12-month momentum into your portfolio and weight them equally. Hold them for one month and then rebalance.
#region imports
from AlgorithmImports import *
#endregion
class SectorMomentumAlgorithm(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
# daily ROC data
self.data:Dict[str, RateOfChange] = {}
self.roc_period:int = 12 * 21
self.SetWarmUp(self.roc_period, Resolution.Daily)
self.selected_symbol_count:int = 3 # long symbol count
self.long_universe:List[str] = [
"VNQ", # Vanguard Real Estate Index Fund
"XLK", # Technology Select Sector SPDR Fund
"XLE", # Energy Select Sector SPDR Fund
"XLV", # Health Care Select Sector SPDR Fund
"XLF", # Financial Select Sector SPDR Fund
"XLI", # Industrials Select Sector SPDR Fund
"XLB", # Materials Select Sector SPDR Fund
"XLY", # Consumer Discretionary Select Sector SPDR Fund
"XLP", # Consumer Staples Select Sector SPDR Fund
"XLU" # Utilities Select Sector SPDR Fund
]
for ticker in self.long_universe:
data = self.AddEquity(ticker, Resolution.Daily)
data.SetLeverage(5)
self.data[ticker] = self.ROC(ticker, self.roc_period, Resolution.Daily)
self.data[self.long_universe[0]].Updated += self.OnROCUpdated
self.recent_month:int = -1
self.rebalance_flag:bool = False
def OnROCUpdated(self, sender, updated) -> None:
# set rebalance flag
if self.recent_month != self.Time.month:
self.recent_month = self.Time.month
self.rebalance_flag = True
def OnData(self, data: Slice) -> None:
if self.IsWarmingUp: return
# rebalance once a month
if self.rebalance_flag:
self.rebalance_flag = False
# sort long universe by momentum
sorted_by_momentum:List = sorted([x for x in self.data.items() if x[1].IsReady and \
x[0] in self.long_universe and \
x[0] in data and data[x[0]]], \
key = lambda x: x[1].Current.Value, reverse = True)
if len(sorted_by_momentum) < self.selected_symbol_count:
self.Liquidate()
return
long:List[str] = [x[0] for x in sorted_by_momentum[:self.selected_symbol_count]]
# trade execution
invested:List[str] = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long:
self.Liquidate(symbol)
for ticker in long:
self.SetHoldings(ticker, 1 / len(long))
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.0
return OrderFee(CashAmount(fee, "USD"))