| Overall Statistics |
|
Total Orders
49271
Average Win
0.04%
Average Loss
-0.04%
Compounding Annual Return
7.898%
Drawdown
48.500%
Expectancy
0.067
Start Equity
100000
End Equity
179756.05
Net Profit
79.756%
Sharpe Ratio
0.265
Sortino Ratio
0.284
Probabilistic Sharpe Ratio
1.966%
Loss Rate
44%
Win Rate
56%
Profit-Loss Ratio
0.91
Alpha
0.095
Beta
-0.534
Annual Standard Deviation
0.18
Annual Variance
0.032
Information Ratio
-0.143
Tracking Error
0.285
Treynor Ratio
-0.089
Total Fees
$396.36
Estimated Strategy Capacity
$0
Lowest Capacity Asset
AFAR XZ06GLQJ9LK5
Portfolio Turnover
2.28%
|
# https://quantpedia.com/strategies/short-interest-effect-long-short-version/
#
# All stocks from NYSE, AMEX, and NASDAQ are part of the investment universe. Stocks are then sorted each month into short-interest deciles based on
# the ratio of short interest to shares outstanding. The investor then goes long on the decile with the lowest short ratio and short on the decile
# with the highest short ratio. The portfolio is rebalanced monthly, and stocks in the portfolio are weighted equally.
from AlgorithmImports import *
from io import StringIO
from typing import List, Dict
from numpy import isnan
class ShortInterestEffect(QCAlgorithm):
def Initialize(self) -> None:
self.SetStartDate(2017, 1, 1)
self.SetCash(100_000)
self.quantile: int = 10
self.leverage: int = 5
self.weight: Dict[Symbol, float] = {}
# source: https://www.finra.org/finra-data/browse-catalog/equity-short-interest/data
text: str = self.Download('data.quantpedia.com/backtesting_data/economic/short_volume.csv')
self.short_volume_df: DataFrame = pd.read_csv(StringIO(text), delimiter=';')
self.short_volume_df['date'] = pd.to_datetime(self.short_volume_df['date']).dt.date
self.short_volume_df.set_index('date', inplace=True)
self.selection_flag: bool = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.FundamentalSelectionFunction)
self.Settings.MinimumOrderMarginPortfolioPercentage = 0.
self.settings.daily_precise_end_time = False
self.recent_month = -1
def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(self.leverage)
def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]:
# monthly rebalance
if self.recent_month == self.Time.month:
return Universe.Unchanged
self.recent_month = self.Time.month
self.selection_flag = True
# check last date on custom data
if self.Time.date() > self.short_volume_df.index[-1] or self.Time.date() < self.short_volume_df.index[0]:
self.Liquidate()
return Universe.Unchanged
selected: List[Fundamental] = [
x for x in fundamental
if x.HasFundamentalData
and x.Market == 'usa'
and x.CompanyProfile.SharesOutstanding != 0
and x.Symbol.Value in self.short_volume_df.columns
]
short_interest: Dict[Symbol, float] = {}
# calculate short interest
for stock in selected:
symbol: Symbol = stock.Symbol
ticker: str = symbol.Value
if ticker in self.short_volume_df.columns:
if isnan(self.short_volume_df[self.short_volume_df.index <= self.Time.date()][ticker][-1]):
continue
short_interest[symbol] = self.short_volume_df[self.short_volume_df.index <= self.Time.date()][ticker][-1] / stock.CompanyProfile.SharesOutstanding
if len(short_interest) >= self.quantile:
# sorting by short interest ratio
sorted_short_interest: List[Fundamental] = sorted(short_interest, key = short_interest.get)
quantile: int = int(len(sorted_short_interest) / self.quantile)
long: List[Fundamental] = sorted_short_interest[:quantile]
short: List[Fundamental] = sorted_short_interest[-quantile:]
# equaly weighting
for i, portfolio in enumerate([long, short]):
for symbol in portfolio:
self.weight[symbol] = ((-1) ** i) / len(portfolio)
return list(self.weight.keys())
def OnData(self, data: Slice) -> None:
if not self.selection_flag:
return
self.selection_flag = False
# trade execution
portfolio:List[PortfolioTarget] = [PortfolioTarget(symbol, w) for symbol, w in self.weight.items() if symbol in data and data[symbol]]
self.SetHoldings(portfolio, True)
self.weight.clear()
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters: OrderFeeParameters) -> OrderFee:
fee: float = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))