| Overall Statistics |
|
Total Trades
102
Average Win
1.37%
Average Loss
-0.62%
Compounding Annual Return
-0.771%
Drawdown
31.700%
Expectancy
-0.149
Net Profit
-16.427%
Sharpe Ratio
-0.081
Probabilistic Sharpe Ratio
0.000%
Loss Rate
73%
Win Rate
27%
Profit-Loss Ratio
2.19
Alpha
-0.006
Beta
0.033
Annual Standard Deviation
0.05
Annual Variance
0.003
Information Ratio
-0.37
Tracking Error
0.165
Treynor Ratio
-0.123
Total Fees
$26.57
Estimated Strategy Capacity
$0
Lowest Capacity Asset
CME_AD1.QuantpediaFutures 2S
|
#region imports
from AlgorithmImports import *
#endregion
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# Quandl "value" data
class QuandlValue(PythonQuandl):
def __init__(self):
self.ValueColumnName = 'Value'
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
return data
# https://quantpedia.com/strategies/currency-value-factor-ppp-strategy/
#
# Create an investment universe consisting of several currencies (10-20). Use the latest OECD Purchasing Power Parity figure to assess
# the fair value of each currency versus USD in the month of publishing and then use monthly CPI changes and exchange rate changes to
# create fair PPP value for the month prior to the current month. Go long three currencies that are the most undervalued (lowest PPP
# fair value figure) and go short three currencies that are the most overvalued (highest PPP fair value figure). Invest cash not used
# as margin on overnight rates. Rebalance quarterly or monthly.
#
# QC implementation changes:
# - Yearly rebalance instead of quarterly is performed.
import data_tools
from AlgorithmImports import *
class CurrencyValueFactorPPPStrategy(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
# currency future symbol and PPP yearly quandl symbol
# PPP source: https://www.quandl.com/data/ODA-IMF-Cross-Country-Macroeconomic-Statistics?keyword=%20United%20States%20Implied%20PPP%20Conversion%20Rate
self.symbols = {"CME_AD1" : "ODA/AUS_PPPEX", # Australian Dollar Futures, Continuous Contract #1
"CME_BP1" : "ODA/GBR_PPPEX", # British Pound Futures, Continuous Contract #1
"CME_CD1" : "ODA/CAD_PPPEX", # Canadian Dollar Futures, Continuous Contract #1
"CME_EC1" : "ODA/DEU_PPPEX", # Euro FX Futures, Continuous Contract #1
"CME_JY1" : "ODA/JPN_PPPEX", # Japanese Yen Futures, Continuous Contract #1
"CME_NE1" : "ODA/NZL_PPPEX", # New Zealand Dollar Futures, Continuous Contract #1
"CME_SF1" : "ODA/CHE_PPPEX" # Swiss Franc Futures, Continuous Contract #1
}
for symbol in self.symbols:
data = self.AddData(data_tools.QuantpediaFutures, symbol, Resolution.Daily)
data.SetFeeModel(data_tools.CustomFeeModel())
data.SetLeverage(5)
# PPP quandl data.
ppp_symbol = self.symbols[symbol]
self.AddData(data_tools.QuandlValue, ppp_symbol, Resolution.Daily)
self.recent_month = -1
def OnData(self, data):
if self.recent_month == self.Time.month:
return
self.recent_month = self.Time.month
# January rebalance
if self.recent_month == 1:
ppp = {}
for symbol, ppp_symbol in self.symbols.items():
# if symbol in data and data[symbol]:
if self.Securities[symbol].GetLastData() and (self.Time.date() - self.Securities[symbol].GetLastData().Time.date()).days < 3:
# new ppp data arrived
if ppp_symbol in data and data[ppp_symbol]:
ppp[symbol] = data[ppp_symbol].Value
count = 3
long = []
short = []
if len(ppp) >= count*2:
# ppp sorting
sorted_by_ppp = sorted(ppp.items(), key = lambda x: x[1], reverse = True)
long = [x[0] for x in sorted_by_ppp[-count:]]
short = [x[0] for x in sorted_by_ppp[:count]]
# trade execution
invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long + short:
self.Liquidate(symbol)
for symbol in long:
self.SetHoldings(symbol, 1 / len(long))
for symbol in short:
self.SetHoldings(symbol, -1 / len(short))