| Overall Statistics |
|
Total Trades
3018
Average Win
1.32%
Average Loss
-1.30%
Compounding Annual Return
5.399%
Drawdown
43.100%
Expectancy
0.081
Net Profit
211.250%
Sharpe Ratio
0.347
Probabilistic Sharpe Ratio
0.033%
Loss Rate
46%
Win Rate
54%
Profit-Loss Ratio
1.01
Alpha
0.059
Beta
0.009
Annual Standard Deviation
0.172
Annual Variance
0.03
Information Ratio
-0.062
Tracking Error
0.245
Treynor Ratio
6.354
Total Fees
$5450.70
Estimated Strategy Capacity
$0
Lowest Capacity Asset
CME_LN1.QuantpediaFutures 2S
|
# https://quantpedia.com/strategies/term-structure-effect-in-commodities/
#
# This simple strategy buys each month the 20% of commodities with the highest roll-returns and shorts the 20% of commodities with the lowest
# roll-returns and holds the long-short positions for one month. The contracts in each quintile are equally-weighted.
# The investment universe is all commodity futures contracts.
class TermStructureCommodities(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbols = [
"CME_S", # Soybean Futures, Continuous Contract
"CME_W", # Wheat Futures, Continuous Contract
"CME_SM", # Soybean Meal Futures, Continuous Contract
"CME_BO", # Soybean Oil Futures, Continuous Contract
"CME_C", # Corn Futures, Continuous Contract
"CME_O", # Oats Futures, Continuous Contract
"CME_LC", # Live Cattle Futures, Continuous Contract
"CME_FC", # Feeder Cattle Futures, Continuous Contract
"CME_LN", # Lean Hog Futures, Continuous Contract
"CME_GC", # Gold Futures, Continuous Contract
"CME_SI", # Silver Futures, Continuous Contract
"CME_PL", # Platinum Futures, Continuous Contract
"CME_CL", # Crude Oil Futures, Continuous Contract
"CME_HG", # Copper Futures, Continuous Contract
"CME_LB", # Random Length Lumber Futures, Continuous Contract
"CME_NG", # Natural Gas (Henry Hub) Physical Futures, Continuous Contract
"CME_PA", # Palladium Futures, Continuous Contract
"CME_RR", # Rough Rice Futures, Continuous Contract
"CME_CU", # Chicago Ethanol (Platts) Futures
"CME_DA", # Class III Milk Futures
"ICE_RS1", # Canola Futures, Continuous Contract
"ICE_GO1", # Gas Oil Futures, Continuous Contract
"CME_RB2", # Gasoline Futures, Continuous Contract
"CME_KW2", # Wheat Kansas, Continuous Contract
"ICE_WT1", # WTI Crude Futures, Continuous Contract
"ICE_CC", # Cocoa Futures, Continuous Contract
"ICE_CT", # Cotton No. 2 Futures, Continuous Contract
"ICE_KC", # Coffee C Futures, Continuous Contract
"ICE_O", # Heating Oil Futures, Continuous Contract
"ICE_OJ", # Orange Juice Futures, Continuous Contract
"ICE_SB", # Sugar No. 11 Futures, Continuous Contract
]
# True -> Quantpedia data
# False -> Quandl free data
self.use_quantpedia_data = True
if self.use_quantpedia_data:
for symbol in self.symbols:
sym = symbol + '1'
data = self.AddData(QuantpediaFutures, sym, Resolution.Daily)
data.SetLeverage(5)
data.SetFeeModel(CustomFeeModel(self))
self.symbols2 = ['CHRIS/' + x for x in self.symbols]
for symbol in self.symbols2:
sym1 = symbol + '1'
data = self.AddData(QuandlFutures, sym1, Resolution.Daily)
if not self.use_quantpedia_data:
data.SetLeverage(5)
data.SetFeeModel(CustomFeeModel(self))
sym2 = symbol + '2'
self.AddData(QuandlFutures, sym2, Resolution.Daily)
self.Schedule.On(self.DateRules.MonthStart(self.symbols2[0] + '1'), self.TimeRules.AfterMarketOpen(self.symbols2[0] + '1'), self.Rebalance)
def Rebalance(self):
# Roll return calc.
roll_return = {}
for symbol_index in range(0, len(self.symbols2)):
symbol = self.symbols2[symbol_index]
sym1 = symbol + '1'
sym2 = symbol + '2'
traded_symbol = ''
if self.use_quantpedia_data:
traded_symbol = self.symbols[symbol_index] + '1'
else:
traded_symbol = sym1
price1 = self.Securities[sym1].Price
price2 = self.Securities[sym2].Price
if price1 != 0 and price2 != 0:
roll_return[traded_symbol] = price1 / price2 - 1
# Roll return sorting.
long = []
short = []
if len(roll_return) != 0:
sorted_by_roll = sorted(roll_return.items(), key=lambda x: x[1], reverse = True)
quintile = int(len(sorted_by_roll) / 5)
long = [x[0] for x in sorted_by_roll[:quintile]]
short = [x[0] for x in sorted_by_roll[-quintile:]]
# Trade execution.
invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long + short:
self.Liquidate(symbol)
for symbol in long:
self.SetHoldings(symbol, 1 / len(long))
for symbol in short:
self.SetHoldings(symbol, -1 / len(short))
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
return data
# Quandl free data
class QuandlFutures(PythonQuandl):
def __init__(self):
self.ValueColumnName = "settle"
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))