| Overall Statistics |
|
Total Orders
1551
Average Win
1.82%
Average Loss
-2.11%
Compounding Annual Return
-0.680%
Drawdown
75.100%
Expectancy
0.021
Start Equity
100000
End Equity
89392.76
Net Profit
-10.607%
Sharpe Ratio
0.009
Sortino Ratio
0.01
Probabilistic Sharpe Ratio
0.000%
Loss Rate
45%
Win Rate
55%
Profit-Loss Ratio
0.86
Alpha
0.006
Beta
-0.046
Annual Standard Deviation
0.218
Annual Variance
0.048
Information Ratio
-0.331
Tracking Error
0.269
Treynor Ratio
-0.042
Total Fees
$1875.19
Estimated Strategy Capacity
$0
Lowest Capacity Asset
CME_O1.QuantpediaFutures 2S
Portfolio Turnover
6.00%
|
#region imports
from AlgorithmImports import *
#endregion
class FuturesInfo():
def __init__(self, quantpedia_future:Symbol) -> None:
self.quantpedia_future:Symbol = quantpedia_future
self.near_contract:FuturesContract = None
self.distant_contract:FuturesContract = None
def update_contracts(self, near_contract:FuturesContract, distant_contract:FuturesContract) -> None:
self.near_contract = near_contract
self.distant_contract = distant_contract
def is_initialized(self) -> bool:
return self.near_contract is not None and self.distant_contract is not None
# Custom fee model.
class CustomFeeModel():
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
_last_update_date:Dict[str, datetime.date] = {}
@staticmethod
def get_last_update_date() -> Dict[str, datetime.date]:
return QuantpediaFutures._last_update_date
def GetSource(self, config:SubscriptionDataConfig, date:datetime, isLiveMode:bool) -> SubscriptionDataSource:
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config:SubscriptionDataConfig, line:str, date:datetime, isLiveMode:bool) -> BaseData:
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
# store last update date
if config.Symbol not in QuantpediaFutures._last_update_date:
QuantpediaFutures._last_update_date[config.Symbol] = datetime(1,1,1).date()
if data.Time.date() > QuantpediaFutures._last_update_date[config.Symbol]:
QuantpediaFutures._last_update_date[config.Symbol] = data.Time.date()
return data
# https://quantpedia.com/strategies/term-structure-effect-in-commodities/
#
# This simple strategy buys each month the 20% of commodities with the highest roll-returns and shorts the 20% of commodities with the lowest
# roll-returns and holds the long-short positions for one month. The contracts in each quintile are equally-weighted.
# The investment universe is all commodity futures contracts.
#
# QC implementation changes:
#region imports
import numpy as np
from AlgorithmImports import *
import data_tools
#endregion
class TermStructureEffectinCommodities(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2009, 1, 1)
self.SetCash(100000)
symbols: Dict[str, str] = {
'CME_S1': Futures.Grains.Soybeans,
'CME_W1': Futures.Grains.Wheat,
'CME_SM1': Futures.Grains.SoybeanMeal,
'CME_C1': Futures.Grains.Corn,
'CME_O1': Futures.Grains.Oats,
'CME_LC1': Futures.Meats.LiveCattle,
'CME_FC1': Futures.Meats.FeederCattle,
'CME_LN1': Futures.Meats.LeanHogs,
'CME_GC1': Futures.Metals.Gold,
'CME_SI1': Futures.Metals.Silver,
'CME_PL1': Futures.Metals.Platinum,
'CME_HG1': Futures.Metals.Copper,
'CME_LB1': Futures.Forestry.RandomLengthLumber,
'CME_NG1': Futures.Energies.NaturalGas,
'CME_PA1': Futures.Metals.Palladium,
'CME_DA1': Futures.Dairy.ClassIIIMilk,
'CME_RB1': Futures.Energies.Gasoline,
'ICE_WT1': Futures.Energies.CrudeOilWTI,
'ICE_CC1': Futures.Softs.Cocoa,
'ICE_O1': Futures.Energies.HeatingOil,
'ICE_SB1': Futures.Softs.Sugar11CME,
}
self.futures_info: Dict[str, data_tools.FuturesInfo] = {}
self.quantile: int = 5
min_expiration_days: int = 2
max_expiration_days: int = 360
for qp_symbol, qc_future in symbols.items():
# QP futures
data: Security = self.AddData(data_tools.QuantpediaFutures, qp_symbol, Resolution.Daily)
data.SetFeeModel(data_tools.CustomFeeModel())
data.SetLeverage(5)
# QC futures
future: Future = self.AddFuture(qc_future, Resolution.Daily)
future.SetFilter(timedelta(days=min_expiration_days), timedelta(days=max_expiration_days))
self.futures_info[future.Symbol.Value] = data_tools.FuturesInfo(data.Symbol)
self.recent_month: int = -1
self.Settings.MinimumOrderMarginPortfolioPercentage = 0.
def find_and_update_contracts(self, futures_chain, symbol) -> None:
near_contract: FuturesContract = None
dist_contract: FuturesContract = None
if symbol in futures_chain:
contracts: List = [contract for contract in futures_chain[symbol] if contract.Expiry.date() > self.Time.date()]
if len(contracts) >= 2:
contracts: List = sorted(contracts, key=lambda x: x.Expiry, reverse=False)
near_contract = contracts[0]
dist_contract = contracts[1]
self.futures_info[symbol].update_contracts(near_contract, dist_contract)
def OnData(self, slice: Slice) -> None:
if slice.FutureChains.Count > 0:
for symbol, futures_info in self.futures_info.items():
# check if near contract is expired or is not initialized
if not futures_info.is_initialized() or \
(futures_info.is_initialized() and futures_info.near_contract.Expiry.date() <= self.Time.date()):
self.find_and_update_contracts(slice.FutureChains, symbol)
roll_return: Dict[Symbol, float] = {}
rebalance_flag: bool = False
# roll return calculation
for symbol, futures_info in self.futures_info.items():
# custom data is still coming
if self.securities[futures_info.quantpedia_future].get_last_data() and self.time.date() > data_tools.QuantpediaFutures.get_last_update_date()[futures_info.quantpedia_future]:
self.liquidate()
return
# futures data is present in the algorithm
if futures_info.quantpedia_future in slice and slice[futures_info.quantpedia_future]:
# new month rebalance
if self.Time.month != self.recent_month and not self.IsWarmingUp:
self.recent_month = self.Time.month
rebalance_flag = True
if rebalance_flag:
if futures_info.is_initialized():
near_c: FuturesContract = futures_info.near_contract
dist_c: FuturesContract = futures_info.distant_contract
if self.Securities.ContainsKey(near_c.Symbol) and self.Securities.ContainsKey(dist_c.Symbol):
raw_price1: float = self.Securities[near_c.Symbol].Close
raw_price2: float = self.Securities[dist_c.Symbol].Close
if raw_price1 != 0 and raw_price2 != 0:
roll_return[futures_info.quantpedia_future] = raw_price1 / raw_price2 - 1
if rebalance_flag:
weights: Dict[Symbol, float] = {}
long: List[Symbol] = []
short: List[Symbol] = []
if len(roll_return) >= self.quantile:
# roll return sorting
sorted_by_roll: List[Tuple] = sorted(roll_return.items(), key = lambda x: x[1], reverse=True)
quantile: int = int(len(sorted_by_roll) / self.quantile)
long = [x[0] for x in sorted_by_roll[:quantile]]
short = [x[0] for x in sorted_by_roll[-quantile:]]
# trade execution
invested: List[Symbol] = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long + short:
self.Liquidate(symbol)
for i, portfolio in enumerate([long, short]):
for symbol in portfolio:
if symbol in slice and slice[symbol]:
self.SetHoldings(symbol, ((-1) ** i) / len(portfolio))