| Overall Statistics |
|
Total Trades
2456
Average Win
0.53%
Average Loss
-0.43%
Compounding Annual Return
5.157%
Drawdown
18.000%
Expectancy
0.212
Net Profit
180.316%
Sharpe Ratio
0.652
Probabilistic Sharpe Ratio
3.577%
Loss Rate
46%
Win Rate
54%
Profit-Loss Ratio
1.25
Alpha
0.044
Beta
0.006
Annual Standard Deviation
0.069
Annual Variance
0.005
Information Ratio
-0.094
Tracking Error
0.19
Treynor Ratio
6.984
Total Fees
$887.22
|
# https://quantpedia.com/strategies/skewness-effect-in-commodities/
#
# The investment universe consists of 27 futures contracts on commodities. Each month, investor calculates skewness (3rd moment of returns)
# from daily returns from data going 12 months into the past for all futures. Commodities are then sorted into quintiles and investor goes
# long quintile containing the commodities with the 20% lowest total skewness and short quintile containing the commodities with the 20% highest
# total skewness (over a ranking period of 12 months). The resultant portfolio is equally weighted and rebalanced each month.
import numpy as np
import fk_tools
from scipy.stats import skew
from collections import deque
from math import sqrt
class SkewnessEffect(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbols = [
"CME_S1", # Soybean Futures, Continuous Contract
"CME_W1", # Wheat Futures, Continuous Contract
"CME_SM1", # Soybean Meal Futures, Continuous Contract
"CME_BO1", # Soybean Oil Futures, Continuous Contract
"CME_C1", # Corn Futures, Continuous Contract
"CME_O1", # Oats Futures, Continuous Contract
"CME_LC1", # Live Cattle Futures, Continuous Contract
"CME_FC1", # Feeder Cattle Futures, Continuous Contract
"CME_LN1", # Lean Hog Futures, Continuous Contract
"CME_GC1", # Gold Futures, Continuous Contract
"CME_SI1", # Silver Futures, Continuous Contract
"CME_PL1", # Platinum Futures, Continuous Contract
"CME_CL1", # Crude Oil Futures, Continuous Contract
"CME_HG1", # Copper Futures, Continuous Contract
"CME_LB1", # Random Length Lumber Futures, Continuous Contract
"CME_NG1", # Natural Gas (Henry Hub) Physical Futures, Continuous Contract
"CME_PA1", # Palladium Futures, Continuous Contract
"CME_RR1", # Rough Rice Futures, Continuous Contract
"CME_CU1", # Chicago Ethanol (Platts) Futures
"CME_DA1", # Class III Milk Futures
"ICE_CC1", # Cocoa Futures, Continuous Contract
"ICE_CT1", # Cotton No. 2 Futures, Continuous Contract
"ICE_KC1", # Coffee C Futures, Continuous Contract
"ICE_O1", # Heating Oil Futures, Continuous Contract
"ICE_OJ1", # Orange Juice Futures, Continuous Contract
"ICE_SB1" # Sugar No. 11 Futures, Continuous Contract
]
self.period = 12 * 21
self.SetWarmup(self.period)
self.targeted_volatility = 0.10
# Daily price data.
self.data = {}
# True -> Quantpedia data
# False -> Quandl free data
self.use_quantpedia_data = True
if not self.use_quantpedia_data:
self.symbols = ['CHRIS/' + x for x in self.symbols]
for symbol in self.symbols:
data = None
if self.use_quantpedia_data:
data = self.AddData(fk_tools.QuantpediaFutures, symbol, Resolution.Daily)
else:
data = self.AddData(fk_tools.QuandlFutures, symbol, Resolution.Daily)
data.SetFeeModel(fk_tools.CustomFeeModel(self))
data.SetLeverage(20)
self.data[symbol] = deque(maxlen=self.period)
self.Schedule.On(self.DateRules.MonthStart(self.symbols[0]), self.TimeRules.AfterMarketOpen(self.symbols[0]), self.Rebalance)
def OnData(self, data):
for symbol in self.symbols:
if self.Securities.ContainsKey(symbol):
price = self.Securities[symbol].Price
if price != 0:
self.data[symbol].append(price)
else:
# Append latest price as a next one in case there's 0 as price.
if len(self.data[symbol]) > 0:
last_price = self.data[symbol][-1]
self.data[symbol].append(last_price)
def Rebalance(self):
if self.IsWarmingUp: return
# Skewness calculation
skewness_data = {}
volatility = {}
for symbol in self.symbols:
if len(self.data[symbol]) == self.data[symbol].maxlen:
prices = np.array([x for x in self.data[symbol]])
returns = (prices[1:]-prices[:-1]) / prices[:-1]
if len(returns) == self.period - 1:
# NOTE: Manual skewness calculation example
# avg = np.average(returns)
# std = np.std(returns)
# skewness = (sum(np.power((x - avg), 3) for x in returns)) / ((self.return_history[symbol].maxlen-1) * np.power(std, 3))
skewness_data[symbol] = skew(returns)
volatility[symbol] = fk_tools.Volatility(prices[-21:]) * sqrt(252)
if len(skewness_data) == 0 or len(volatility) == 0:
self.Liquidate()
return
# Skewness sorting
sorted_by_skewness = sorted(skewness_data.items(), key = lambda x: x[1], reverse = True)
quintile = int(len(sorted_by_skewness) / 5)
long = [x[0] for x in sorted_by_skewness[-quintile:]]
short = [x[0] for x in sorted_by_skewness[:quintile]]
# Volatility targeting.
count = len(long + short)
portfolio_volatility = sum([((volatility[x]) / count) for x in long + short])
volatility_target_leverage = self.targeted_volatility / portfolio_volatility
# Trade execution
invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long + short:
self.Liquidate(symbol)
for symbol in long:
self.SetHoldings(symbol, volatility_target_leverage / len(long))
for symbol in short:
self.SetHoldings(symbol, -volatility_target_leverage / len(short))
import numpy as np
from scipy.optimize import minimize
sp100_stocks = ['AAPL','MSFT','AMZN','FB','BRK.B','GOOGL','GOOG','JPM','JNJ','V','PG','XOM','UNH','BAC','MA','T','DIS','INTC','HD','VZ','MRK','PFE','CVX','KO','CMCSA','CSCO','PEP','WFC','C','BA','ADBE','WMT','CRM','MCD','MDT','BMY','ABT','NVDA','NFLX','AMGN','PM','PYPL','TMO','COST','ABBV','ACN','HON','NKE','UNP','UTX','NEE','IBM','TXN','AVGO','LLY','ORCL','LIN','SBUX','AMT','LMT','GE','MMM','DHR','QCOM','CVS','MO','LOW','FIS','AXP','BKNG','UPS','GILD','CHTR','CAT','MDLZ','GS','USB','CI','ANTM','BDX','TJX','ADP','TFC','CME','SPGI','COP','INTU','ISRG','CB','SO','D','FISV','PNC','DUK','SYK','ZTS','MS','RTN','AGN','BLK']
def Return(values):
return (values[-1] - values[0]) / values[0]
def Volatility(values):
values = np.array(values)
returns = (values[1:] - values[:-1]) / values[:-1]
return np.std(returns)
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# Quandl free data
class QuandlFutures(PythonQuandl):
def __init__(self):
self.ValueColumnName = "settle"
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
return data
# NOTE: Manager for new trades. It's represented by certain count of equally weighted brackets for long and short positions.
# If there's a place for new trade, it will be managed for time of holding period.
class TradeManager():
def __init__(self, algorithm, long_size, short_size, holding_period):
self.algorithm = algorithm # algorithm to execute orders in.
self.long_size = long_size
self.short_size = short_size
self.weight = 1 / (self.long_size + self.short_size)
self.long_len = 0
self.short_len = 0
# Arrays of ManagedSymbols
self.symbols = []
self.holding_period = holding_period # Days of holding.
# Add stock symbol object
def Add(self, symbol, long_flag):
# Open new long trade.
managed_symbol = ManagedSymbol(symbol, self.holding_period, long_flag)
if long_flag:
# If there's a place for it.
if self.long_len < self.long_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, self.weight)
self.long_len += 1
# Open new short trade.
else:
# If there's a place for it.
if self.long_len < self.short_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, - self.weight)
self.short_len += 1
# Decrement holding period and liquidate symbols.
def TryLiquidate(self):
symbols_to_delete = []
for managed_symbol in self.symbols:
managed_symbol.days_to_liquidate -= 1
# Liquidate.
if managed_symbol.days_to_liquidate == 0:
symbols_to_delete.append(managed_symbol)
self.algorithm.Liquidate(managed_symbol.symbol)
if managed_symbol.long_flag: self.long_len -= 1
else: self.short_len -= 1
# Remove symbols from management.
for managed_symbol in symbols_to_delete:
self.symbols.remove(managed_symbol)
class ManagedSymbol():
def __init__(self, symbol, days_to_liquidate, long_flag):
self.symbol = symbol
self.days_to_liquidate = days_to_liquidate
self.long_flag = long_flag
class PortfolioOptimization(object):
def __init__(self, df_return, risk_free_rate, num_assets):
self.daily_return = df_return
self.risk_free_rate = risk_free_rate
self.n = num_assets # numbers of risk assets in portfolio
self.target_vol = 0.05
def annual_port_return(self, weights):
# calculate the annual return of portfolio
return np.sum(self.daily_return.mean() * weights) * 252
def annual_port_vol(self, weights):
# calculate the annual volatility of portfolio
return np.sqrt(np.dot(weights.T, np.dot(self.daily_return.cov() * 252, weights)))
def min_func(self, weights):
# method 1: maximize sharp ratio
return - self.annual_port_return(weights) / self.annual_port_vol(weights)
# method 2: maximize the return with target volatility
#return - self.annual_port_return(weights) / self.target_vol
def opt_portfolio(self):
# maximize the sharpe ratio to find the optimal weights
cons = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
bnds = tuple((0, 1) for x in range(2)) + tuple((0, 0.25) for x in range(self.n - 2))
opt = minimize(self.min_func, # object function
np.array(self.n * [1. / self.n]), # initial value
method='SLSQP', # optimization method
bounds=bnds, # bounds for variables
constraints=cons) # constraint conditions
opt_weights = opt['x']
return opt_weights