| Overall Statistics |
|
Total Trades
744
Average Win
0.79%
Average Loss
-0.76%
Compounding Annual Return
1.385%
Drawdown
23.800%
Expectancy
0.057
Net Profit
14.387%
Sharpe Ratio
0.149
Probabilistic Sharpe Ratio
0.059%
Loss Rate
48%
Win Rate
52%
Profit-Loss Ratio
1.03
Alpha
0.043
Beta
-0.31
Annual Standard Deviation
0.094
Annual Variance
0.009
Information Ratio
-0.387
Tracking Error
0.205
Treynor Ratio
-0.045
Total Fees
$964.38
Estimated Strategy Capacity
$0
Lowest Capacity Asset
EUREX_FGBL1.QuantpediaFutures 2S
|
#region imports
from AlgorithmImports import *
#endregion
# Bond yields
class QuandlAAAYield(PythonQuandl):
def __init__(self):
self.ValueColumnName = 'BAMLC0A1CAAAEY'
class QuandlHighYield(PythonQuandl):
def __init__(self):
self.ValueColumnName = 'BAMLH0A0HYM2EY'
# Quantpedia bond yield data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaBondYield(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/bond_yield/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaBondYield()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(',')
data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1)
data['yield'] = float(split[1])
data.Value = float(split[1])
return data
# Country PE data
# NOTE: IMPORTANT: Data order must be ascending (date-wise)
from dateutil.relativedelta import relativedelta
class CountryPE(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/economic/country_pe.csv", SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = CountryPE()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%Y") + relativedelta(years=1)
self.symbols = ['Argentina','Australia','Austria','Belgium','Brazil','Canada','Chile','China','Egypt','France','Germany','Hong Kong','India','Indonesia','Ireland','Israel','Italy','Japan','Malaysia','Mexico','Netherlands','New Zealand','Norway','Philippines','Poland','Russia','Saudi Arabia','Singapore','South Africa','South Korea','Spain','Sweden','Switzerland','Taiwan','Thailand','Turkey','United Kingdom','United States']
index = 1
for symbol in self.symbols:
data[symbol] = float(split[index])
index += 1
data.Value = float(split[1])
return data
# Quandl "value" data
class QuandlValue(PythonQuandl):
def __init__(self):
self.ValueColumnName = 'Value'
# Quantpedia PE ratio data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaPERatio(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/economic/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaPERatio()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1)
data['pe_ratio'] = float(split[1])
data.Value = float(split[1])
return data
# Quantpedia bond yield data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaBondYield(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/bond_yield/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaBondYield()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(',')
data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1)
data['yield'] = float(split[1])
data.Value = float(split[1])
return data
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
return data
# https://quantpedia.com/strategies/value-and-momentum-factors-across-asset-classes/
#
# Create an investment universe containing investable asset classes (could be US large-cap, mid-cap stocks, US REITS, UK, Japan, Emerging market stocks, US treasuries, US Investment grade bonds,
# US high yield bonds, Germany bonds, Japan bonds, US cash) and find a good tracking vehicle for each asset class (best vehicles are ETFs or index funds). Momentum ranking is done on price series.
# Valuation ranking is done on adjusted yield measure for each asset class. E/P (Earning/Price) measure is used for stocks, and YTM (Yield-to-maturity) is used for bonds. US, Japan, and Germany
# treasury yield are adjusted by -1%, US investment-grade bonds are adjusted by -2%, US High yield bonds are adjusted by -6%, emerging markets equities are adjusted by -1%, and US REITs are
# adjusted by -2% to get unbiased structural yields for each asset class. Rank each asset class by 12-month momentum, 1-month momentum, and by valuation and weight all three strategies (25% weight
# to 12m momentum, 25% weight to 1-month momentum, 50% weight to value strategy). Go long top quartile portfolio and go short bottom quartile portfolio.
#
# QC implementation changes:
# - Country PB data ends in 2019. Last known value is used for further years calculations for the sake of backtest.
#region imports
from AlgorithmImports import *
import data_tools
#endregion
class ValueandMomentumFactorsacrossAssetClasses(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2013, 1, 1)
self.SetCash(100000)
# investable asset, yield symbol, yield data access function, yield adjustment, reverse flag(PE -> EP)
self.assets = [
('SPY', 'MULTPL/SP500_EARNINGS_YIELD_MONTH', data_tools.QuandlValue, 0, True), # US large-cap
('MDY', 'MID_CAP_PE', data_tools.QuantpediaPERatio, 0, True), # US mid-cap stocks
('IYR', 'REITS_DIVIDEND_YIELD', data_tools.QuantpediaPERatio, -2, False), # US REITS - same csv data format as PERatio files
('EWU', 'United Kingdom', None, 0, True), # UK
('EWJ', 'Japan', None, 0, True), # Japan
('EEM', 'EMERGING_MARKET_PE', data_tools.QuantpediaPERatio, -1, True), # Emerging market stocks
('LQD', 'ML/AAAEY', data_tools.QuandlAAAYield, -2, False), # US Investment grade bonds
('HYG', 'ML/USTRI', data_tools.QuandlHighYield, -6, False), # US high yield bonds
('CME_TY1', 'US10YT', data_tools.QuantpediaBondYield, -1, False), # US bonds
('EUREX_FGBL1', 'DE10YT', data_tools.QuantpediaBondYield, -1, False), # Germany bonds
('SGX_JB1', 'JP10YT', data_tools.QuantpediaBondYield, -1, False), # Japan bonds
('BIL', 'OECD/KEI_IRSTCI01_USA_ST_M', data_tools.QuandlValue, 0, False) # US cash
]
# country pe data
self.country_pe_data = self.AddData(data_tools.CountryPE, 'CountryData').Symbol
self.data = {}
self.period = 12 * 21
self.SetWarmUp(self.period)
for symbol, yield_symbol, yield_access, _, _ in self.assets:
# investable asset
if yield_access == data_tools.QuantpediaBondYield:
data = self.AddData(data_tools.QuantpediaFutures, symbol, Resolution.Daily)
else:
data = self.AddEquity(symbol, Resolution.Daily)
# yield
if yield_access != None:
self.AddData(yield_access, yield_symbol, Resolution.Daily)
self.data[symbol] = RollingWindow[float](self.period)
data.SetFeeModel(CustomFeeModel())
data.SetLeverage(5)
self.recent_month = -1
def OnData(self, data):
if self.IsWarmingUp:
return
# store investable asset price data
for symbol, yield_symbol, _, _, _ in self.assets:
symbol_obj = self.Symbol(symbol)
if symbol_obj in data and data[symbol_obj]:
self.data[symbol].Add(data[symbol_obj].Value)
if self.Time.month == self.recent_month:
return
self.recent_month = self.Time.month
performance_1M = {}
performance_12M = {}
valuation = {}
# performance and valuation calculation
if self.Securities[self.country_pe_data].GetLastData() and (self.Time.date() - self.Securities[self.country_pe_data].GetLastData().Time.date()).days <= 365:
for symbol, yield_symbol, yield_access, bond_adjustment, reverse_flag in self.assets:
if self.Securities[symbol].GetLastData() and (self.Time.date() - self.Securities[symbol].GetLastData().Time.date()).days < 3:
if self.data[symbol].IsReady:
closes = [x for x in self.data[symbol]]
performance_1M[symbol] = closes[0] / closes[21] - 1
performance_12M[symbol] = closes[0] / closes[len(closes) - 1] - 1
if yield_access == None:
country_pb_data = self.Securities['CountryData'].GetLastData()
if country_pb_data:
pe = country_pb_data[yield_symbol]
yield_value = pe
else:
yield_value = self.Securities[self.Symbol(yield_symbol)].Price
# reverse if needed, EP->PE
if reverse_flag:
yield_value = 1/yield_value
if yield_value != 0:
valuation[symbol] = yield_value + bond_adjustment
long = []
short = []
if len(valuation) != 0:
# sort assets by metrics
sorted_by_p1 = sorted(performance_1M.items(), key = lambda x: x[1])
sorted_by_p12 = sorted(performance_12M.items(), key = lambda x: x[1])
sorted_by_value = sorted(valuation.items(), key = lambda x: x[1])
# rank assets
score = {}
for i, (symbol, _) in enumerate(sorted_by_p1):
score[symbol] = i * 0.25
for i, (symbol, _) in enumerate(sorted_by_p12):
score[symbol] += i * 0.25
for i, (symbol, _) in enumerate(sorted_by_value):
score[symbol] += i * 0.5
# sort by rank
sorted_by_rank = sorted(score, key = lambda x: score[x], reverse = True)
quartile = int(len(sorted_by_rank) / 4)
long = sorted_by_rank[:quartile]
short = sorted_by_rank[-quartile:]
# trade execution
invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long + short:
self.Liquidate(symbol)
long_count = len(long)
short_count = len(short)
for symbol in long:
self.SetHoldings(symbol, 1/long_count)
for symbol in short:
self.SetHoldings(symbol, -1/short_count)
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))