Overall Statistics |
Total Trades
38369
Average Win
0.17%
Average Loss
-0.15%
Compounding Annual Return
-2.840%
Drawdown
84.000%
Expectancy
-0.026
Net Profit
-49.463%
Sharpe Ratio
0.018
Probabilistic Sharpe Ratio
0.000%
Loss Rate
54%
Win Rate
46%
Profit-Loss Ratio
1.13
Alpha
0.018
Beta
-0.24
Annual Standard Deviation
0.218
Annual Variance
0.047
Information Ratio
-0.191
Tracking Error
0.293
Treynor Ratio
-0.017
Total Fees
$1024.05
Estimated Strategy Capacity
$14000000.00
Lowest Capacity Asset
ADRO VZQ7GYGNVHB9
Portfolio Turnover
4.33%
|
# https://quantpedia.com/strategies/momentum-factor-effect-in-stocks/ # # The investment universe consists of NYSE, AMEX, and NASDAQ stocks. We define momentum as the past 12-month return, skipping the most # recent month’s return (to avoid microstructure and liquidity biases). To capture “momentum”, UMD portfolio goes long stocks that have # high relative past one-year returns and short stocks that have low relative past one-year returns. # # QC implementation changes: # - Instead of all listed stock, we select top 500 stocks by market cap from QC stock universe. # region imports from AlgorithmImports import * from typing import List, Dict from pandas.core.frame import DataFrame # endregion class MomentumFactorEffectinStocks(QCAlgorithm): def Initialize(self): self.SetStartDate(2000, 1, 1) self.SetCash(100000) symbol:Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol self.weight:Dict[Symbol, float] = {} self.data:Dcit[Symbol, RollingWindow] = {} self.period:int = 12 * 21 self.quantile:int = 5 self.leverage:int = 5 self.coarse_count:int = 500 self.selection_flag:bool = False self.UniverseSettings.Resolution = Resolution.Daily self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction) self.Schedule.On(self.DateRules.MonthStart(symbol), self.TimeRules.AfterMarketOpen(symbol), self.Selection) def OnSecuritiesChanged(self, changes:SecurityChanges) -> None: for security in changes.AddedSecurities: security.SetFeeModel(CustomFeeModel()) security.SetLeverage(self.leverage) def CoarseSelectionFunction(self, coarse:List[CoarseFundamental]) -> List[Symbol]: # update the rolling window every day for stock in coarse: symbol:Symbol = stock.Symbol # Store monthly price. if symbol in self.data: self.data[symbol].Add(stock.AdjustedPrice) if not self.selection_flag: return Universe.Unchanged # selected = [x.Symbol for x in coarse if x.HasFundamentalData and x.Market == 'usa' and x.Price > 5] selected = [x.Symbol for x in sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa'], key = lambda x: x.DollarVolume, reverse = True)[:self.coarse_count]] # warmup price rolling windows for symbol in selected: if symbol in self.data: continue self.data[symbol] = RollingWindow[float](self.period) history:DataFrame = self.History(symbol, self.period, Resolution.Daily) if history.empty: self.Log(f"Not enough data for {symbol} yet") continue closes:pd.Series = history.loc[symbol].close for time, close in closes.iteritems(): self.data[symbol].Add(close) return [x for x in selected if self.data[x].IsReady] def FineSelectionFunction(self, fine:List[FineFundamental]) -> List[Symbol]: fine = [x for x in fine if x.MarketCap != 0 and \ ((x.SecurityReference.ExchangeId == "NYS") or (x.SecurityReference.ExchangeId == "NAS") or (x.SecurityReference.ExchangeId == "ASE"))] # if len(fine) > self.coarse_count: # sorted_by_market_cap = sorted(fine, key = lambda x:x.MarketCap, reverse=True) # top_by_market_cap = [x for x in sorted_by_market_cap[:self.coarse_count]] # else: # top_by_market_cap = fine perf:Dict[Symbol, float] = {x.Symbol : self.data[x.Symbol][0] / self.data[x.Symbol][self.period-1] - 1 for x in fine} if len(perf) >= self.quantile: sorted_by_perf:List = sorted(perf.items(), key = lambda x:x[1], reverse=True) quantile:int = int(len(sorted_by_perf) / self.quantile) long:List[Symbol] = [x[0] for x in sorted_by_perf[:quantile]] short:List[Symbol] = [x[0] for x in sorted_by_perf[-quantile:]] long_count:int = len(long) short_count:int = len(short) for symbol in long: self.weight[symbol] = 1 / long_count for symbol in short: self.weight[symbol] = -1 / short_count return list(self.weight.keys()) def OnData(self, data:Slice) -> None: if not self.selection_flag: return self.selection_flag = False # trade execution stocks_invested:List[Symbol] = [x.Key for x in self.Portfolio if x.Value.Invested] for symbol in stocks_invested: if symbol not in self.weight: self.Liquidate(symbol) for symbol, w in self.weight.items(): if symbol in data and data[symbol]: self.SetHoldings(symbol, w) self.weight.clear() def Selection(self) -> None: self.selection_flag = True # Custom fee model. class CustomFeeModel(FeeModel): def GetOrderFee(self, parameters): fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005 return OrderFee(CashAmount(fee, "USD"))