| Overall Statistics |
|
Total Trades
4195
Average Win
0.38%
Average Loss
-0.39%
Compounding Annual Return
10.356%
Drawdown
62.400%
Expectancy
0.290
Net Profit
931.747%
Sharpe Ratio
0.439
Probabilistic Sharpe Ratio
0.034%
Loss Rate
34%
Win Rate
66%
Profit-Loss Ratio
0.97
Alpha
0.039
Beta
0.971
Annual Standard Deviation
0.221
Annual Variance
0.049
Information Ratio
0.237
Tracking Error
0.156
Treynor Ratio
0.1
Total Fees
$5012.31
Estimated Strategy Capacity
$14000000.00
Lowest Capacity Asset
INVH WHQ3MH5Q7WX1
Portfolio Turnover
2.18%
|
# https://quantpedia.com/strategies/momentum-factor-effect-in-reits/
#
# The investment universe consists of all US REITs listed on markets. Every month, the investor ranks all available REITs
# by their past 11-month return one-month lagged and groups them into equally weighted tercile portfolios. He/she then goes
# long on the best performing tercile for three months. One-third of the portfolio is rebalanced this way monthly, and REITs
# are equally weighted. This is not the only way to capture the momentum factor in REITs as a consequential portfolio could be
# formed as a long/short or from quartiles/quintiles/deciles instead of terciles or based on different formation and holding
# periods (additional types of this strategy are stated in the “Other papers” section).
#
# QC implementation changes:
# - Instead of all listed stock, we select 500 most liquid stocks from QC filtered stock universe (~8000 stocks) due to time complexity issues tied to whole universe filtering.
from AlgorithmImports import *
class MomentumFactorEffectinREITs(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
# EW Trenching.
self.holding_period = 3
self.managed_queue = []
self.data = {}
self.period = 12 * 21
self.quantile = 3
self.leverage = 5
self.coarse_count = 500
self.selection_flag = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction,self.FineSelectionFunction)
self.Schedule.On(self.DateRules.MonthEnd(self.symbol), self.TimeRules.BeforeMarketClose(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(self.leverage)
def CoarseSelectionFunction(self, coarse):
if not self.selection_flag:
return Universe.Unchanged
# Update the rolling window every month.
for stock in coarse:
symbol = stock.Symbol
# Store monthly price.
if symbol in self.data:
self.data[symbol].update(stock.AdjustedPrice)
# selected = [x.Symbol for x in coarse if x.HasFundamentalData and x.Market == 'usa']
selected = [x.Symbol
for x in sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa'],
key = lambda x: x.DollarVolume, reverse = True)[:self.coarse_count]]
# Warmup price rolling windows.
for symbol in selected:
if symbol in self.data:
continue
self.data[symbol] = SymbolData(symbol, 13)
history = self.History(symbol, self.period * 30, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet.")
continue
closes = history.loc[symbol].close
closes_len = len(closes.keys())
# Find monthly closes.
for index, time_close in enumerate(closes.iteritems()):
# index out of bounds check.
if index + 1 < closes_len:
date_month = time_close[0].date().month
next_date_month = closes.keys()[index + 1].month
# Found last day of month.
if date_month != next_date_month:
self.data[symbol].update(time_close[1])
selected = [x for x in selected if self.data[x].is_ready()]
return selected
def FineSelectionFunction(self, fine):
fine = [x.Symbol for x in fine if (x.CompanyReference.IsREIT == 1)]
momentum = {x : self.data[x].performance(1) for x in fine}
long = []
short = []
if len(momentum) >= self.quantile:
sorted_by_momentum = sorted(momentum.items(), key = lambda x: x[1], reverse = True)
quantile = int(len(sorted_by_momentum) / self.quantile)
long = [x[0] for x in sorted_by_momentum[:quantile]]
weight = self.Portfolio.TotalPortfolioValue / self.holding_period / len(long)
long_symbol_q = [(symbol, np.floor(weight / self.data[symbol].prices[0])) for symbol in long]
self.managed_queue.append(RebalanceQueueItem(long_symbol_q))
return long
def OnData(self, data):
if not self.selection_flag:
return
self.selection_flag = False
# rebalance portfolio
remove_item = None
for item in self.managed_queue:
if item.holding_period == self.holding_period: # all portfolio parts are held for n months
for symbol, quantity in item.opened_symbol_q:
self.MarketOrder(symbol, -quantity)
remove_item = item
# trade execution
if item.holding_period == 0: # all portfolio parts are held for n months
opened_symbol_q = []
for symbol, quantity in item.opened_symbol_q:
if symbol in data and data[symbol]:
self.MarketOrder(symbol, quantity)
opened_symbol_q.append((symbol, quantity))
# only opened orders will be closed
item.opened_symbol_q = opened_symbol_q
item.holding_period += 1
# need to remove closed part of portfolio after loop. Otherwise it will miss one item in self.managed_queue
if remove_item:
self.managed_queue.remove(remove_item)
def Selection(self):
self.selection_flag = True
class SymbolData():
def __init__(self, symbol, period):
self.symbol = symbol
self.prices = RollingWindow[float](period)
def update(self, value):
self.prices.Add(value)
def is_ready(self) -> bool:
return self.prices.IsReady
# Performance, one month skipped.
def performance(self, values_to_skip = 0) -> float:
closes = [x for x in self.prices][values_to_skip:]
return (closes[0] / closes[-1] - 1)
class RebalanceQueueItem():
def __init__(self, symbol_q):
# symbol/quantity collections
self.opened_symbol_q = symbol_q
self.holding_period = 0
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))