| Overall Statistics |
|
Total Trades
58243
Average Win
0.09%
Average Loss
-0.10%
Compounding Annual Return
-3.549%
Drawdown
80.700%
Expectancy
-0.027
Net Profit
-54.176%
Sharpe Ratio
-0.013
Probabilistic Sharpe Ratio
0.000%
Loss Rate
48%
Win Rate
52%
Profit-Loss Ratio
0.89
Alpha
-0.003
Beta
-0.005
Annual Standard Deviation
0.231
Annual Variance
0.053
Information Ratio
-0.269
Tracking Error
0.291
Treynor Ratio
0.636
Total Fees
$1194.18
Estimated Strategy Capacity
$9100000.00
Lowest Capacity Asset
WPG VQY4YY1HBASL
|
# https://quantpedia.com/strategies/momentum-factor-effect-in-stocks/
#
# The investment universe consists of NYSE, AMEX, and NASDAQ stocks. We define momentum as the past 12-month return, skipping the most
# recent month’s return (to avoid microstructure and liquidity biases). To capture “momentum”, UMD portfolio goes long stocks that have
# high relative past one-year returns and short stocks that have low relative past one-year returns.
#
# QC implementation changes:
# - Instead of all listed stock, we select top 500 stocks by market cap from QC stock universe.
class MomentumFactorEffectinStocks(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.long = []
self.short = []
self.data = {}
self.period = 12 * 21
self.coarse_count = 500
self.selection_flag = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.Schedule.On(self.DateRules.MonthStart(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel(self))
security.SetLeverage(10)
def CoarseSelectionFunction(self, coarse):
# Update the rolling window every day.
for stock in coarse:
symbol = stock.Symbol
# Store monthly price.
if symbol in self.data:
self.data[symbol].update(stock.AdjustedPrice)
if not self.selection_flag:
return Universe.Unchanged
# selected = [x.Symbol for x in coarse if x.HasFundamentalData and x.Market == 'usa' and x.Price > 5]
selected = [x.Symbol
for x in sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa'],
key = lambda x: x.DollarVolume, reverse = True)[:self.coarse_count]]
# Warmup price rolling windows.
for symbol in selected:
if symbol in self.data:
continue
self.data[symbol] = SymbolData(symbol, self.period)
history = self.History(symbol, self.period, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet")
continue
closes = history.loc[symbol].close
for time, close in closes.iteritems():
self.data[symbol].update(close)
return [x for x in selected if self.data[x].is_ready()]
def FineSelectionFunction(self, fine):
fine = [x for x in fine if x.MarketCap != 0 and \
((x.SecurityReference.ExchangeId == "NYS") or (x.SecurityReference.ExchangeId == "NAS") or (x.SecurityReference.ExchangeId == "ASE"))]
# if len(fine) > self.coarse_count:
# sorted_by_market_cap = sorted(fine, key = lambda x:x.MarketCap, reverse=True)
# top_by_market_cap = [x for x in sorted_by_market_cap[:self.coarse_count]]
# else:
# top_by_market_cap = fine
perf = {x.Symbol : self.data[x.Symbol].performance() for x in fine}
sorted_by_perf = sorted(perf.items(), key = lambda x:x[1], reverse=True)
quintile = int(len(sorted_by_perf) / 5)
self.long = [x[0] for x in sorted_by_perf[:quintile]]
self.short = [x[0] for x in sorted_by_perf[-quintile:]]
return self.long + self.short
def OnData(self, data):
if not self.selection_flag:
return
self.selection_flag = False
# Trade execution.
long_count = len(self.long)
short_count = len(self.short)
stocks_invested = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in stocks_invested:
if symbol not in self.long + self.short:
self.Liquidate(symbol)
for symbol in self.long:
if self.Securities[symbol].Price != 0 and self.Securities[symbol].IsTradable:
self.SetHoldings(symbol, 1 / long_count)
for symbol in self.short:
if self.Securities[symbol].Price != 0 and self.Securities[symbol].IsTradable:
self.SetHoldings(symbol, -1 / short_count)
self.long.clear()
self.short.clear()
def Selection(self):
self.selection_flag = True
class SymbolData():
def __init__(self, symbol, period):
self.Symbol = symbol
self.Price = RollingWindow[float](period)
def update(self, value):
self.Price.Add(value)
def is_ready(self):
return self.Price.IsReady
# Yearly performance, one month skipped.
def performance(self):
closes = [x for x in self.Price][21:]
return (closes[0] / closes[-1] - 1)
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))