| Overall Statistics |
|
Total Orders
13669
Average Win
0.07%
Average Loss
-0.04%
Compounding Annual Return
13.700%
Drawdown
25.900%
Expectancy
0.733
Start Equity
100000
End Equity
715437.58
Net Profit
615.438%
Sharpe Ratio
0.691
Sortino Ratio
0.632
Probabilistic Sharpe Ratio
15.657%
Loss Rate
36%
Win Rate
64%
Profit-Loss Ratio
1.70
Alpha
0.023
Beta
0.658
Annual Standard Deviation
0.123
Annual Variance
0.015
Information Ratio
-0.091
Tracking Error
0.093
Treynor Ratio
0.129
Total Fees
$1174.64
Estimated Strategy Capacity
$70000000.00
Lowest Capacity Asset
ALG R735QTJ8XC9X
Portfolio Turnover
1.47%
|
# https://quantpedia.com/strategies/esg-factor-momentum-strategy/
#
# The investment universe consists of stocks in the MSCI World Index. Paper uses MSCI ESG Ratings as the ESG database.
# The ESG Momentum strategy is built by overweighting, relative to the MSCI World Index, companies that increased their
# ESG ratings most during the recent past and underweight those with decreased ESG ratings, where the increases and decreases
# are based on a 12-month ESG momentum. The paper uses the Barra Global Equity Model (GEM3) for portfolio construction with
# constraints that can be found in Appendix 2. Therefore, this strategy is very specific, but we aim to present the idea, not
# the portfolio construction. The strategy is rebalanced monthly.
#
# QC implementation changes:
# - Universe consists of ~700 stocks with ESG score data.
#region imports
from AlgorithmImports import *
from numpy import floor
from collections import deque
from typing import List, Dict, Tuple
from dataclasses import dataclass
from decimal import *
#endregion
class ESGFactorMomentumStrategy(QCAlgorithm):
def Initialize(self) -> None:
self.SetStartDate(2009, 6, 1)
self.SetCash(100_000)
# Decile weighting.
# True - Value weighted
# False - Equally weighted
self.value_weighting: bool = True
self.esg_data: Security = self.AddData(ESGData, 'ESG', Resolution.Daily)
self.tickers: List[str] = []
self.holding_period: int = 3
self.managed_queue: List[RebalanceQueueItem] = []
self.quantile: int = 10
self.leverage: int = 10
# Monthly ESG decile data.
self.esg: Dict[str, RollingWindow[float]] = {}
self.period: int = 14
self.latest_price: Dict[Symbol, float] = {}
self.selection_flag: bool = False
self.UniverseSettings.Leverage = self.leverage
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.FundamentalSelectionFunction)
self.settings.daily_precise_end_time = False
self.Settings.MinimumOrderMarginPortfolioPercentage = 0.
def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]:
if not self.selection_flag:
return Universe.Unchanged
self.latest_price.clear()
selected: List[Fundamental] = [
x for x in fundamental
if x.MarketCap != 0
and (x.Symbol.Value).lower() in self.tickers]
for stock in selected:
symbol: Symbol = stock.Symbol
self.latest_price[symbol] = stock.AdjustedPrice
momentum: Dict[Fundamental, float] = {}
# Momentum calc.
for stock in selected:
symbol: Symbol = stock.Symbol
ticker: str = symbol.Value
# ESG data for 14 months is ready.
if ticker in self.esg and self.esg[ticker].IsReady:
esg_data: List[float] = [x for x in self.esg[ticker]]
esg_decile_2_months_ago: float = esg_data[1]
esg_decile_14_months_ago: float = esg_data[13]
if esg_decile_14_months_ago != 0 and esg_decile_2_months_ago != 0:
# Momentum as difference.
# momentum_ = esg_decile_2_months_ago - esg_decile_14_months_ago
# Momentum as ratio.
momentum_: float = (esg_decile_2_months_ago / esg_decile_14_months_ago) - 1
# Store momentum/market cap pair.
momentum[stock] = momentum_
if len(momentum) <= self.quantile:
return Universe.Unchanged
# Momentum sorting.
sorted_by_momentum: List[Tuple[Fundamental, float]] = sorted(momentum.items(), key = lambda x: x[1], reverse = True)
quantile: int = int(len(sorted_by_momentum) / self.quantile)
long: List[Fundamental] = [x[0] for x in sorted_by_momentum[:quantile]]
short: List[Fundamental] = [x[0] for x in sorted_by_momentum[-quantile:]]
if len(long) == 0 or len(short) == 0:
return Universe.Unchanged
weights: List[Tuple[Symbol, float]] = []
# ew
if not self.value_weighting:
for i, portfolio in enumerate([long, short]):
for stock in portfolio:
w: float = self.Portfolio.TotalPortfolioValue / self.holding_period / len(portfolio)
weights.append((stock.Symbol, ((-1) ** i) * floor(w / self.latest_price[stock.Symbol])))
# vw
else:
for i, portfolio in enumerate([long, short]):
mc_sum: float = sum(list(map(lambda x: x.MarketCap, portfolio)))
for stock in portfolio:
w: float = self.Portfolio.TotalPortfolioValue / self.holding_period
weights.append((stock.Symbol, ((-1) ** i) * floor((w * (stock.MarketCap / mc_sum))) / self.latest_price[stock.Symbol]))
self.managed_queue.append(RebalanceQueueItem(weights))
return [x.Symbol for x in long + short]
def OnData(self, slice: Slice) -> None:
new_data_arrived: bool = False
custom_data_last_update_date: datetime.date = ESGData.get_last_update_date()
if self.esg_data.get_last_data() and self.time.date() > custom_data_last_update_date:
self.liquidate()
return
if slice.contains_key('ESG') and slice['ESG']:
# Store universe tickers.
if len(self.tickers) == 0:
# TODO '_typename' in storage dictionary?
self.tickers = [x.Key for x in self.esg_data.GetLastData().GetStorageDictionary()][1:-1]
# Store history for every ticker.
for ticker in self.tickers:
ticker_u: str = ticker.upper()
if ticker_u not in self.esg:
self.esg[ticker_u] = RollingWindow[float](self.period)
decile: float = self.esg_data.GetLastData()[ticker]
self.esg[ticker_u].Add(decile)
# trigger selection after new esg data arrived.
if not self.selection_flag:
new_data_arrived = True
if new_data_arrived:
self.selection_flag = True
return
if not self.selection_flag:
return
self.selection_flag = False
# Trade execution
remove_item: Union[None, RebalanceQueueItem] = None
# Rebalance portfolio
for item in self.managed_queue:
if item.holding_period == self.holding_period:
for symbol, quantity in item.symbol_q:
self.MarketOrder(symbol, -quantity)
remove_item = item
elif item.holding_period == 0:
open_symbol_q: List[RebalanceQueueItem] = []
for symbol, quantity in item.symbol_q:
if quantity >= 1:
if slice.contains_key(symbol) and slice[symbol]:
self.MarketOrder(symbol, quantity)
open_symbol_q.append((symbol, quantity))
# Only opened orders will be closed
item.symbol_q = open_symbol_q
item.holding_period += 1
if remove_item:
self.managed_queue.remove(remove_item)
@dataclass
class RebalanceQueueItem():
# symbol/quantity collections
symbol_q: List[Tuple[Symbol, float]]
holding_period: int = 0
# ESG data.
class ESGData(PythonData):
_last_update_date:datetime.date = datetime(1,1,1).date()
@staticmethod
def get_last_update_date() -> datetime.date:
return ESGData._last_update_date
def __init__(self):
self.tickers = []
def GetSource(self, config: SubscriptionDataConfig, date: datetime, isLiveMode: bool) -> SubscriptionDataSource:
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/economic/esg_deciles_data.csv", SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config: SubscriptionDataConfig, line: str, date: datetime, isLiveMode: bool) -> BaseData:
data = ESGData()
data.Symbol = config.Symbol
if not line[0].isdigit():
self.tickers = [x for x in line.split(';')][1:]
return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1)
index = 1
for ticker in self.tickers:
data[ticker] = float(split[index])
index += 1
data.Value = float(split[1])
if data.Time.date() > ESGData._last_update_date:
ESGData._last_update_date = data.Time.date()
return data
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters: OrderFeeParameters) -> OrderFee:
fee: float = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))