| Overall Statistics |
|
Total Trades
421
Average Win
0.42%
Average Loss
-0.16%
Compounding Annual Return
1.070%
Drawdown
5.100%
Expectancy
0.737
Net Profit
25.844%
Sharpe Ratio
0.382
Probabilistic Sharpe Ratio
0.013%
Loss Rate
52%
Win Rate
48%
Profit-Loss Ratio
2.61
Alpha
0.009
Beta
-0.002
Annual Standard Deviation
0.024
Annual Variance
0.001
Information Ratio
-0.371
Tracking Error
0.178
Treynor Ratio
-4.563
Total Fees
$63.25
Estimated Strategy Capacity
$82000000.00
Lowest Capacity Asset
CAKE R735QTJ8XC9X
|
# https://quantpedia.com/strategies/earnings-announcement-premium/
#
# The investment universe consists of all stocks from the CRSP database. At the beginning of every calendar month, stocks are ranked in ascending
# order on the basis of the volume concentration ratio, which is defined as the volume of the previous 16 announcement months divided by the total
# volume in the previous 48 months. The ranked stocks are assigned to one of 5 quintile portfolios. Within each quintile, stocks are assigned to
# one of two portfolios (expected announcers and expected non-announcers) using the predicted announcement based on the previous year. All stocks
# are value-weighted within a given portfolio, and portfolios are rebalanced every calendar month to maintain value weights. The investor invests
# in a long-short portfolio, which is a zero-cost portfolio that holds the portfolio of high volume expected announcers and sells short the
# portfolio of high volume expected non-announcers.
#
# QC implementation changes:
# - Universe consists of 1000 most liquid stocks traded on NYSE, AMEX, or NASDAQ.
from collections import deque
class EarningsAnnouncementPremium(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.period = 21
self.month_period = 48
# Volume daily data.
self.data = {}
# Volume monthly data.
self.monthly_volume = {}
self.coarse_count = 1000
self.weight = {}
self.selection_flag = True
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.Schedule.On(self.DateRules.MonthStart(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel(self))
security.SetLeverage(10)
def CoarseSelectionFunction(self, coarse):
# Update the rolling window every day.
for stock in coarse:
symbol = stock.Symbol
# Store monthly price.
if symbol in self.data:
self.data[symbol].Add(stock.Volume)
if not self.selection_flag:
return Universe.Unchanged
# selected = [x.Symbol for x in coarse if x.HasFundamentalData and x.Market == 'usa']
selected = [x.Symbol
for x in sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa'],
key = lambda x: x.DollarVolume, reverse = True)[:self.coarse_count]]
# Warmup volume rolling windows.
for symbol in selected:
# Warmup data.
if symbol not in self.data:
self.data[symbol] = RollingWindow[float](self.period)
history = self.History(symbol, self.period, Resolution.Daily)
if history.empty:
self.Debug(f"No history for {symbol} yet")
continue
volumes = history.loc[symbol].volume
for _, volume in volumes.iteritems():
self.data[symbol].Add(volume)
return [x for x in selected if self.data[x].IsReady]
def FineSelectionFunction(self, fine):
fine = [x for x in fine if x.MarketCap != 0 and \
((x.SecurityReference.ExchangeId == "NYS") or (x.SecurityReference.ExchangeId == "NAS") or (x.SecurityReference.ExchangeId == "ASE"))]
# if len(fine) > self.coarse_count:
# sorted_by_market_cap = sorted(fine, key = lambda x: x.MarketCap, reverse=True)
# top_by_market_cap = sorted_by_market_cap[:self.coarse_count]
# else:
# top_by_market_cap = fine
top_by_market_cap = fine
fine_symbols = [x.Symbol for x in top_by_market_cap]
# Ratio/market cap pair.
volume_concentration_ratio = {}
for stock in top_by_market_cap:
symbol = stock.Symbol
if symbol not in self.monthly_volume:
self.monthly_volume[symbol] = deque(maxlen = self.month_period)
monthly_vol = sum([x for x in self.data[symbol]])
last_month_date = self.Time - timedelta(days = self.Time.day)
last_file_date = stock.EarningReports.FileDate # stock annoucement day
was_announcement_month = (last_file_date.year == last_month_date.year and last_file_date.month == last_month_date.month) # Last month was announcement date.
self.monthly_volume[symbol].append(VolumeData(last_month_date, monthly_vol, was_announcement_month))
# 48 months of volume data is ready.
if len(self.monthly_volume[symbol]) == self.monthly_volume[symbol].maxlen:
# Volume concentration ratio calc.
announcement_count = 16
announcement_volumes = [x.Volume for x in self.monthly_volume[symbol] if x.WasAnnouncementMonth][-announcement_count:]
if len(announcement_volumes) == announcement_count:
announcement_months_volume = sum(announcement_volumes)
total_volume = sum([x.Volume for x in self.monthly_volume[symbol]])
if announcement_months_volume != 0 and total_volume != 0:
# Store ratio, market cap pair.
volume_concentration_ratio[stock] = announcement_months_volume / total_volume
# Volume sorting.
sorted_by_volume = sorted(volume_concentration_ratio.items(), key = lambda x: x[1], reverse = True)
quintile = int(len(sorted_by_volume) / 5)
high_volume = [x[0] for x in sorted_by_volume[:quintile]]
# Filering announcers and non-announcers.
month_to_lookup = self.Time.month
year_to_lookup = self.Time.year - 1
long = []
short = []
for stock in high_volume:
symbol = stock.Symbol
announcement_dates = [[x.Date.year, x.Date.month] for x in self.monthly_volume[symbol] if x.WasAnnouncementMonth]
if [year_to_lookup, month_to_lookup] in announcement_dates:
long.append(stock)
else:
short.append(stock)
# Delete not updated symbols.
symbols_to_remove = []
for symbol in self.monthly_volume:
if symbol not in fine_symbols:
symbols_to_remove.append(symbol)
for symbol in symbols_to_remove:
del self.monthly_volume[symbol]
# Market cap weighting.
total_market_cap_long = sum([x.MarketCap for x in long])
for stock in long:
self.weight[symbol] = stock.MarketCap / total_market_cap_long
total_market_cap_short = sum([x.MarketCap for x in short])
for stock in short:
self.weight[symbol] = -stock.MarketCap / total_market_cap_short
return [x[0] for x in self.weight.items()]
def OnData(self, data):
if not self.selection_flag:
return
self.selection_flag = False
# Trade execution.
stocks_invested = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in stocks_invested:
if symbol not in self.weight:
self.Liquidate(symbol)
for symbol, w in self.weight.items():
if self.Securities[symbol].Price != 0: # Prevent error message.
self.SetHoldings(symbol, w)
self.weight.clear()
def Selection(self):
self.selection_flag = True
# Monthly volume data.
class VolumeData():
def __init__(self, date, monthly_volume, was_announcement_month):
self.Date = date
self.Volume = monthly_volume
self.WasAnnouncementMonth = was_announcement_month
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))