| Overall Statistics |
|
Total Trades
29837
Average Win
0.12%
Average Loss
-0.12%
Compounding Annual Return
0.997%
Drawdown
44.000%
Expectancy
0.008
Net Profit
26.484%
Sharpe Ratio
0.125
Probabilistic Sharpe Ratio
0.000%
Loss Rate
49%
Win Rate
51%
Profit-Loss Ratio
0.99
Alpha
0.016
Beta
-0.102
Annual Standard Deviation
0.082
Annual Variance
0.007
Information Ratio
-0.255
Tracking Error
0.195
Treynor Ratio
-0.101
Total Fees
$1259.10
Estimated Strategy Capacity
$67000000.00
Lowest Capacity Asset
GDRX XI3O6TO7ZCDH
Portfolio Turnover
2.35%
|
# https://quantpedia.com/strategies/roa-effect-within-stocks/
#
# The investment universe contains all stocks on NYSE and AMEX and Nasdaq with Sales greater than 10 million USD. Stocks are then sorted into
# two halves based on market capitalization. Each half is then divided into deciles based on Return on assets (ROA) calculated as quarterly
# earnings (Compustat quarterly item IBQ – income before extraordinary items) divided by one-quarter-lagged assets (item ATQ – total assets).
# The investor then goes long the top three deciles from each market capitalization group and goes short bottom three deciles. The strategy is
# rebalanced monthly, and stocks are equally weighted.
#
# QC implementation changes:
# - Instead of all listed stock, we select 500 most liquid stocks traded on NYSE, AMEX, or NASDAQ.
from AlgorithmImports import *
class ROAEffectWithinStocks(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.course_count = 500
self.long = []
self.short = []
self.selection_flag = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.Schedule.On(self.DateRules.MonthEnd(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(5)
def CoarseSelectionFunction(self, coarse):
if not self.selection_flag:
return Universe.Unchanged
selected = sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa' and x.Price > 5],
key=lambda x: x.DollarVolume, reverse=True)
return [x.Symbol for x in selected[:self.course_count]]
def FineSelectionFunction(self, fine):
fine = [x for x in fine if x.MarketCap != 0 and x.ValuationRatios.SalesPerShare * x.EarningReports.DilutedAverageShares.Value > 10000000 and
x.OperationRatios.ROA.ThreeMonths != 0
and ((x.SecurityReference.ExchangeId == "NYS") or (x.SecurityReference.ExchangeId == "NAS") or (x.SecurityReference.ExchangeId == "ASE"))]
# Sorting by market cap.
sorted_by_market_cap = sorted(fine, key = lambda x: x.MarketCap, reverse=True)
half = int(len(sorted_by_market_cap) / 2)
top_mc = [x for x in sorted_by_market_cap[:half]]
bottom_mc = [x for x in sorted_by_market_cap[half:]]
if len(top_mc) >= 10 and len(bottom_mc) >= 10:
# Sorting by ROA.
sorted_top_by_roa = sorted(top_mc, key = lambda x:(x.OperationRatios.ROA.Value), reverse=True)
decile = int(len(sorted_top_by_roa) / 10)
long_top = [x.Symbol for x in sorted_top_by_roa[:decile*3]]
short_top = [x.Symbol for x in sorted_top_by_roa[-(decile*3):]]
sorted_bottom_by_roa = sorted(bottom_mc, key = lambda x:(x.OperationRatios.ROA.Value), reverse=True)
decile = int(len(sorted_bottom_by_roa) / 10)
long_bottom = [x.Symbol for x in sorted_bottom_by_roa[:decile*3]]
short_bottom = [x.Symbol for x in sorted_bottom_by_roa[-(decile*3):]]
self.long = long_top + long_bottom
self.short = short_top + short_bottom
return self.long + self.short
def OnData(self, data):
if not self.selection_flag:
return
self.selection_flag = False
# Trade execution.
stocks_invested = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in stocks_invested:
if symbol not in self.long + self.short:
self.Liquidate(symbol)
long_count = len(self.long)
short_count = len(self.short)
for symbol in self.long:
self.SetHoldings(symbol, 1 / long_count)
for symbol in self.short:
self.SetHoldings(symbol, -1 / short_count)
self.long.clear()
self.short.clear()
def Selection(self):
self.selection_flag = True
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))