| Overall Statistics |
|
Total Orders
44192
Average Win
0.07%
Average Loss
-0.04%
Compounding Annual Return
12.561%
Drawdown
56.500%
Expectancy
0.377
Start Equity
100000
End Equity
1988181.81
Net Profit
1888.182%
Sharpe Ratio
0.527
Sortino Ratio
0.572
Probabilistic Sharpe Ratio
2.353%
Loss Rate
47%
Win Rate
53%
Profit-Loss Ratio
1.59
Alpha
0.081
Beta
-0.2
Annual Standard Deviation
0.138
Annual Variance
0.019
Information Ratio
0.138
Tracking Error
0.233
Treynor Ratio
-0.365
Total Fees
$2314.72
Estimated Strategy Capacity
$0
Lowest Capacity Asset
FDEF R735QTJ8XC9X
Portfolio Turnover
0.53%
|
# https://quantpedia.com/strategies/value-book-to-market-factor/
#
# The investment universe contains all NYSE, AMEX, and NASDAQ stocks. To represent “value” investing, HML portfolio goes long high book-to-price stocks and short,
# low book-to-price stocks. In this strategy, we show the results for regular HML which is simply the average of the portfolio returns of HML small (which goes long
# cheap and short expensive only among small stocks) and HML large (which goes long cheap and short expensive only among large caps). The portfolio is equal-weighted
# and rebalanced monthly.
#
# QC implementation changes:
# - Quintile selection is done.
from AlgorithmImports import *
import numpy as np
from typing import List
class ValueBooktoMarketFactor(QCAlgorithm):
def Initialize(self) -> None:
self.SetStartDate(2000, 1, 1)
self.SetCash(100_000)
self.UniverseSettings.Leverage = 5
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.FundamentalFunction)
self.Settings.MinimumOrderMarginPortfolioPercentage = 0.0
self.settings.daily_precise_end_time = False
self.long_symbols: List[Symbol] = []
self.short_symbols: List[Symbol] = []
# Fundamental Filter Parameters
self.exchange_codes: List[str] = ['NYS', 'NAS', 'ASE']
self.quantile: int = 5
self.rebalancing_month: int = 12
self.selection_flag: bool = True
self.exchange: Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.Schedule.On(self.DateRules.MonthEnd(self.exchange),
self.TimeRules.AfterMarketOpen(self.exchange),
self.Selection)
def FundamentalFunction(self, fundamental: List[Fundamental]) -> List[Symbol]:
if not self.selection_flag:
return Universe.Unchanged
selected: List[Fundamental] = [f for f in fundamental if f.HasFundamentalData
and f.SecurityReference.ExchangeId in self.exchange_codes
and not np.isnan(f.ValuationRatios.PBRatio)
and f.ValuationRatios.PBRatio != 0]
if len(selected) >= self.quantile:
sorted_by_pb: List[Fundamental] = sorted(selected,
key = lambda x:(x.ValuationRatios.PBRatio),
reverse=False)
quantile: int = int(len(sorted_by_pb) / self.quantile)
self.long_symbols = [i.Symbol for i in sorted_by_pb[:quantile]]
self.short_symbols = [i.Symbol for i in sorted_by_pb[-quantile:]]
return self.long_symbols + self.short_symbols
def OnData(self, slice: Slice) -> None:
if not self.selection_flag:
return
self.selection_flag = False
# Trade execution - Leveraged portfolio - 100% long, 100% short
targets: List[PortfolioTarget] = []
for i, portfolio in enumerate([self.long_symbols, self.short_symbols]):
for symbol in portfolio:
if slice.ContainsKey(symbol) and slice[symbol] is not None:
targets.append(PortfolioTarget(symbol, ((-1) ** i) / len(portfolio)))
self.SetHoldings(targets, True)
self.long_symbols.clear()
self.short_symbols.clear()
def Selection(self) -> None:
if self.Time.month == self.rebalancing_month:
self.selection_flag = True
def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters: OrderFeeParameters) -> OrderFee:
fee: float = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))