| Overall Statistics |
|
Total Orders
14835
Average Win
0.28%
Average Loss
-0.25%
Compounding Annual Return
17.664%
Drawdown
61.000%
Expectancy
0.211
Start Equity
100000
End Equity
6095506.90
Net Profit
5995.507%
Sharpe Ratio
0.596
Sortino Ratio
0.601
Probabilistic Sharpe Ratio
2.176%
Loss Rate
43%
Win Rate
57%
Profit-Loss Ratio
1.12
Alpha
0.093
Beta
0.631
Annual Standard Deviation
0.199
Annual Variance
0.04
Information Ratio
0.428
Tracking Error
0.182
Treynor Ratio
0.188
Total Fees
$20563.58
Estimated Strategy Capacity
$28000000.00
Lowest Capacity Asset
PPC UIUWC8DDZ42T
Portfolio Turnover
2.64%
|
# https://quantpedia.com/strategies/betting-against-beta-factor-in-stocks/
#
# The investment universe consists of all stocks from the CRSP database. The beta for each stock is calculated with respect to the MSCI US Equity Index using a 1-year
# rolling window. Stocks are then ranked in ascending order on the basis of their estimated beta. The ranked stocks are assigned to one of two portfolios: low beta and
# high beta. Securities are weighted by the ranked betas, and portfolios are rebalanced every calendar month. Both portfolios are rescaled to have a beta of one at portfolio
# formation. The “Betting-Against-Beta” is the zero-cost zero-beta portfolio that is long on the low-beta portfolio and short on the high-beta portfolio. There are a lot of
# simple modifications (like going long on the bottom beta decile and short on the top beta decile), which could probably improve the strategy’s performance.
#
# QC implementation changes:
# - The investment universe consists of 1000 most liquid US stocks with price >= 5$.
from scipy import stats
from AlgorithmImports import *
import numpy as np
from pandas.core.frame import DataFrame
from typing import List, Dict
class BettingAgainstBetaFactorinStocks(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
# daily price data
self.data:Dict[Symbol, RollingWindow] = {}
self.period:int = 12 * 21
self.symbol:Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.data[self.symbol] = RollingWindow[float](self.period)
self.long:List[Symbol] = []
self.short:List[Symbol] = []
self.long_lvg:float = 1. # leverage for long portfolio calculated from average beta
self.short_lvg:float = 1. # leverage for short portfolio calculated from average beta
self.leverage_cap:float = 2.
self.coarse_count:int = 1000
self.quantile:int = 10
self.min_share_price:float = 5.
self.selection_flag:bool = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.FundamentalSelectionFunction)
self.Schedule.On(self.DateRules.MonthStart(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection)
self.settings.daily_precise_end_time = False
def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(self.leverage_cap*3)
def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]:
# update the rolling window every day
for stock in fundamental:
symbol:Symbol = stock.Symbol
if symbol in self.data:
# Store daily price.
self.data[symbol].Add(stock.AdjustedPrice)
# selection once a month
if not self.selection_flag:
return Universe.Unchanged
selected:List[Symbol] = [x.Symbol
for x in sorted([x for x in fundamental if x.HasFundamentalData and x.Market == 'usa' and x.Price >= self.min_share_price and x.MarketCap != 0],
key = lambda x: x.DollarVolume, reverse = True)[:self.coarse_count]]
rebalance:bool = False
if self.data[self.symbol].IsReady:
rebalance = True
beta:Dict[Symbol, float] = {}
for symbol in selected:
# warmup price rolling windows
if symbol not in self.data:
self.data[symbol] = RollingWindow[float](self.period)
history:DataFrame = self.History(symbol, self.period, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet")
continue
closes:pd.Series = history.loc[symbol].close
for time, close in closes.items():
self.data[symbol].Add(close)
if rebalance:
if self.data[symbol].IsReady:
market_closes:np.ndarray = np.array([x for x in self.data[self.symbol]])
stock_closes:np.ndarray = np.array([x for x in self.data[symbol]])
market_returns:np.ndarray = (market_closes[:-1] - market_closes[1:]) / market_closes[1:]
stock_returns:np.ndarray = (stock_closes[:-1] - stock_closes[1:]) / stock_closes[1:]
cov:float = np.cov(stock_returns[::-1], market_returns[::-1])[0][1]
market_variance:float = np.var(market_returns)
beta[symbol] = cov / market_variance
if len(beta) >= self.quantile:
# sort by beta
sorted_by_beta:List = sorted(beta.items(), key = lambda x: x[1], reverse=True)
quantile:int = int(len(sorted_by_beta) / self.quantile)
self.long = [x for x in sorted_by_beta[-quantile:]]
self.short = [x for x in sorted_by_beta[:quantile]]
# create zero-beta portfolio
long_mean_beta:float = np.mean([x[1] for x in self.long])
short_mean_beta:float = np.mean([x[1] for x in self.short])
self.long = [x[0] for x in self.long]
self.short = [x[0] for x in self.short]
# cap leverage
self.long_lvg = min(self.leverage_cap, abs(1. / long_mean_beta))
self.short_lvg = min(self.leverage_cap, abs(1. / short_mean_beta))
return self.long + self.short
def OnData(self, data: Slice) -> None:
if not self.selection_flag:
return
self.selection_flag = False
# trade execution
stocks_invested:List[Symbol] = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in stocks_invested:
if symbol not in self.long + self.short:
self.Liquidate(symbol)
long_len:int = len(self.long)
short_len:int = len(self.short)
for symbol in self.long:
if symbol in data and data[symbol]:
self.SetHoldings(symbol, (1 / long_len) * self.long_lvg)
for symbol in self.short:
if symbol in data and data[symbol]:
self.SetHoldings(symbol, -(1 / short_len) * self.short_lvg)
self.long.clear()
self.short.clear()
self.long_lvg = 1
self.short_lvg = 1
def Selection(self) -> None:
self.selection_flag = True
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))