| Overall Statistics |
|
Total Trades
8046
Average Win
0.45%
Average Loss
-0.47%
Compounding Annual Return
6.752%
Drawdown
27.300%
Expectancy
0.070
Net Profit
227.919%
Sharpe Ratio
0.592
Probabilistic Sharpe Ratio
1.334%
Loss Rate
45%
Win Rate
55%
Profit-Loss Ratio
0.95
Alpha
0.045
Beta
0.069
Annual Standard Deviation
0.084
Annual Variance
0.007
Information Ratio
-0.14
Tracking Error
0.171
Treynor Ratio
0.725
Total Fees
$18204.77
Estimated Strategy Capacity
$7900000.00
Lowest Capacity Asset
NVR R735QTJ8XC9X
|
#region imports
from AlgorithmImports import *
#endregion
# https://quantpedia.com/strategies/pairs-trading-with-stocks/
#
# The investment universe consists of stocks from NYSE, AMEX, and NASDAQ, while illiquid stocks are removed from the investment universe. Cumulative
# total return index is then created for each stock (dividends included), and the starting price during the formation period is set to $1 (price normalization).
# Pairs are formed over twelve months (formation period) and are then traded in the next six-month period (trading period). The matching partner for each stock
# is found by looking for the security that minimizes the sum of squared deviations between two normalized price series. Top 20 pairs with the smallest historical
# distance measure are then traded, and a long-short position is opened when pair prices have diverged by two standard deviations, and the position is closed
# when prices revert.
#
# QC implementation changes:
# - Universe consists of top 500 most liquid US stocks with price > 5$.
# - Maximum number of pairs traded at one time is set to 5.
import numpy as np
import itertools as it
class PairsTradingwithStocks(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2005, 1, 1)
self.SetCash(100000)
self.symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
# Daily price data.
self.history_price = {}
self.period = 12 * 21
# Equally weighted brackets.
self.max_traded_pairs = 5
self.traded_pairs = []
self.traded_quantity = {}
self.sorted_pairs = []
self.coarse_count = 500
self.month = 6
self.selection_flag = True
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction)
self.Schedule.On(self.DateRules.MonthStart(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(5)
for security in changes.RemovedSecurities:
symbol = security.Symbol
if symbol in self.history_price:
del self.history_price[symbol]
symbols = [x for x in self.history_price.keys() if x != self.symbol]
self.symbol_pairs = list(it.combinations(symbols, 2))
# minimize the sum of squared deviations
distances = {}
for pair in self.symbol_pairs:
if self.history_price[pair[0]].IsReady and self.history_price[pair[1]].IsReady:
distances[pair] = self.Distance(self.history_price[pair[0]], self.history_price[pair[1]])
if len(distances) != 0:
self.sorted_pairs = [x[0] for x in sorted(distances.items(), key = lambda x: x[1])[:20]]
self.Liquidate()
self.traded_pairs.clear()
self.traded_quantity.clear()
def CoarseSelectionFunction(self, coarse):
# Update the rolling window every day.
for stock in coarse:
symbol = stock.Symbol
if symbol in self.history_price:
self.history_price[symbol].Add(stock.AdjustedPrice)
if not self.selection_flag:
return Universe.Unchanged
self.selection_flag = False
selected = sorted([x for x in coarse if x.HasFundamentalData and x.Price > 5 and x.Market == 'usa'],
key=lambda x: x.DollarVolume, reverse=True)[:self.coarse_count]
# Warmup price rolling windows.
for stock in selected:
symbol = stock.Symbol
if symbol in self.history_price:
continue
self.history_price[symbol] = RollingWindow[float](self.period)
history = self.History(symbol, self.period, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet")
continue
closes = history.loc[symbol].close
for time, close in closes.iteritems():
self.history_price[symbol].Add(close)
return [x.Symbol for x in selected if self.history_price[x.Symbol].IsReady]
def OnData(self, data):
if self.sorted_pairs is None: return
pairs_to_remove = []
for pair in self.sorted_pairs:
# Calculate the spread of two price series.
price_a = [x for x in self.history_price[pair[0]]]
price_b = [x for x in self.history_price[pair[1]]]
norm_a = np.array(price_a) / price_a[-1]
norm_b = np.array(price_b) / price_b[-1]
spread = norm_a - norm_b
mean = np.mean(spread)
std = np.std(spread)
actual_spread = spread[0]
# Long-short position is opened when pair prices have diverged by two standard deviations.
traded_portfolio_value = self.Portfolio.TotalPortfolioValue / self.max_traded_pairs
if actual_spread > mean + 2*std or actual_spread < mean - 2*std:
if pair not in self.traded_pairs:
# open new position for pair, if there's place for it.
if len(self.traded_pairs) < self.max_traded_pairs:
symbol_a = pair[0]
symbol_b = pair[1]
a_price_norm = norm_a[0]
b_price_norm = norm_b[0]
a_price = price_a[0]
b_price = price_b[0]
# a stock's price > b stock's price
if a_price_norm > b_price_norm:
long_q = traded_portfolio_value / b_price # long b stock
short_q = -traded_portfolio_value / a_price # short a stock
if self.Securities.ContainsKey(symbol_a) and self.Securities.ContainsKey(symbol_b) and \
self.Securities[symbol_a].Price != 0 and self.Securities[symbol_a].IsTradable and \
self.Securities[symbol_b].Price != 0 and self.Securities[symbol_b].IsTradable:
self.MarketOrder(symbol_a, short_q)
self.MarketOrder(symbol_b, long_q)
self.traded_quantity[pair] = (short_q, long_q)
self.traded_pairs.append(pair)
# b stock's price > a stock's price
else:
long_q = traded_portfolio_value / a_price
short_q = -traded_portfolio_value / b_price
if self.Securities.ContainsKey(symbol_a) and self.Securities.ContainsKey(symbol_b) and \
self.Securities[symbol_a].Price != 0 and self.Securities[symbol_a].IsTradable and \
self.Securities[symbol_b].Price != 0 and self.Securities[symbol_b].IsTradable:
self.MarketOrder(symbol_a, long_q)
self.MarketOrder(symbol_b, short_q)
self.traded_quantity[pair] = (long_q, short_q)
self.traded_pairs.append(pair)
# The position is closed when prices revert back.
else:
if pair in self.traded_pairs and pair in self.traded_quantity:
# make opposite order to opened position
self.MarketOrder(pair[0], -self.traded_quantity[pair][0])
self.MarketOrder(pair[1], -self.traded_quantity[pair][1])
pairs_to_remove.append(pair)
for pair in pairs_to_remove:
self.traded_pairs.remove(pair)
del self.traded_quantity[pair]
def Distance(self, price_a, price_b):
# Calculate the sum of squared deviations between two normalized price series.
price_a = [x for x in price_a]
price_b = [x for x in price_b]
norm_a = np.array(price_a) / price_a[-1]
norm_b = np.array(price_b) / price_b[-1]
return sum((norm_a - norm_b)**2)
def Selection(self):
if self.month == 6:
self.selection_flag = True
self.month += 1
if self.month > 12:
self.month = 1
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))