| Overall Statistics |
|
Total Trades
47932
Average Win
0.09%
Average Loss
-0.10%
Compounding Annual Return
1.750%
Drawdown
57.400%
Expectancy
0.023
Net Profit
49.313%
Sharpe Ratio
0.161
Probabilistic Sharpe Ratio
0.000%
Loss Rate
46%
Win Rate
54%
Profit-Loss Ratio
0.89
Alpha
0.059
Beta
-0.484
Annual Standard Deviation
0.191
Annual Variance
0.036
Information Ratio
-0.091
Tracking Error
0.297
Treynor Ratio
-0.064
Total Fees
$2792.23
Estimated Strategy Capacity
$21000000.00
Lowest Capacity Asset
MCW XPMG4J9N0TID
|
# https://quantpedia.com/strategies/52-weeks-high-effect-in-stocks/
#
# The investment universe consists of all stocks from NYSE, AMEX and NASDAQ (the research paper used the CRSP
# database for backtesting). The ratio between the current price and 52-week high is calculated for each stock
# at the end of each month (PRILAG i,t = Price i,t / 52-Week High i,t). Every month, the investor then calculates
# the weighted average of ratios (PRILAG i,t) from all firms in each industry (20 industries are used), where the
# weight is the market capitalization of the stock at the end of month t. The winners (losers) are stocks in the
# six industries with the highest (lowest) weighted averages of PRILAGi,t. The investor buys stocks in the winner
# portfolio and shorts stocks in the loser portfolio and holds them for three months. Stocks are weighted equally
# and the portfolio is rebalanced monthly (which means that 1/3 of the portfolio is rebalanced each month).
#
# QC implementation changes:
# - Universe consists of 500 most liquid stocks traded on NYSE, AMEX, or NASDAQ.
from numpy import floor
from AlgorithmImports import *
class Weeks52HighEffectinStocks(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.SetSecurityInitializer(lambda x: x.SetMarketPrice(self.GetLastKnownPrice(x)))
self.period = 12 * 21
# Tranching.
self.holding_period = 3
self.managed_queue = []
# Daily 'high' data.
self.data = {}
self.symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.coarse_count = 500
self.selection_flag = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.Schedule.On(self.DateRules.MonthEnd(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(10)
def CoarseSelectionFunction(self, coarse):
# Update the rolling window every day.
for stock in coarse:
symbol = stock.Symbol
if symbol in self.data:
# Store daily price.
self.data[symbol].update(stock.AdjustedPrice)
if not self.selection_flag:
return Universe.Unchanged
selected = [x.Symbol
for x in sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa'],
key = lambda x: x.DollarVolume, reverse = True)[:self.coarse_count]]
# Warmup price rolling windows.
for symbol in selected:
if symbol in self.data:
continue
self.data[symbol] = SymbolData(symbol, self.period)
history = self.History(symbol, self.period, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet")
continue
closes = history.loc[symbol].close
for time, close in closes.iteritems():
self.data[symbol].update(close)
return [x for x in selected if self.data[x].is_ready()]
def FineSelectionFunction(self, fine):
fine = [x for x in fine if x.MarketCap != 0 and \
((x.SecurityReference.ExchangeId == "NYS") or (x.SecurityReference.ExchangeId == "NAS") or (x.SecurityReference.ExchangeId == "ASE"))]
group = {}
for stock in fine:
symbol = stock.Symbol
industry_group_code = stock.AssetClassification.MorningstarIndustryGroupCode
if industry_group_code == 0: continue
# Adding stocks in groups.
if not industry_group_code in group:
group[industry_group_code] = []
max_high = self.data[symbol].maximum()
price = self.data[symbol].get_latest_price()
stock_prilag = (stock, price / max_high)
group[industry_group_code].append(stock_prilag)
top_industries = []
low_industries = []
if len(group) != 0:
# Weighted average of ratios calc.
industry_prilag_weighted_avg = {}
for industry_code in group:
total_market_cap = sum([stock_prilag_data[0].MarketCap for stock_prilag_data in group[industry_code]])
if total_market_cap == 0: continue
industry_prilag_weighted_avg[industry_code] = sum([stock_prilag_data[1] * (stock_prilag_data[0].MarketCap / total_market_cap) for stock_prilag_data in group[industry_code]])
if len(industry_prilag_weighted_avg) != 0:
# Weighted average industry sorting.
sorted_by_weighted_avg = sorted(industry_prilag_weighted_avg.items(), key=lambda x: x[1], reverse = True)
top_industries = [x[0] for x in sorted_by_weighted_avg[:6]]
low_industries = [x[0] for x in sorted_by_weighted_avg[-6:]]
long = []
short = []
for industry_code in top_industries:
for stock_prilag_data in group[industry_code]:
symbol = stock_prilag_data[0].Symbol
long.append(symbol)
for industry_code in low_industries:
for stock_prilag_data in group[industry_code]:
symbol = stock_prilag_data[0].Symbol
short.append(symbol)
long_w = self.Portfolio.TotalPortfolioValue / self.holding_period / len(long)
short_w = self.Portfolio.TotalPortfolioValue / self.holding_period / len(short)
# symbol/quantity collection
long_symbol_q = [(x, floor(long_w / self.data[x].get_latest_price())) for x in long]
short_symbol_q = [(x, -floor(short_w / self.data[x].get_latest_price())) for x in short]
self.managed_queue.append(RebalanceQueueItem(long_symbol_q + short_symbol_q))
return long + short
def OnData(self, data):
if not self.selection_flag:
return
self.selection_flag = False
remove_item = None
# Rebalance portfolio
for item in self.managed_queue:
if item.holding_period == self.holding_period:
# Liquidate
for symbol, quantity in item.symbol_q:
self.MarketOrder(symbol, -quantity)
remove_item = item
# Trade execution
if item.holding_period == 0:
open_symbol_q = []
for symbol, quantity in item.symbol_q:
if self.Securities.ContainsKey(symbol) and self.Securities[symbol].IsTradable:
self.MarketOrder(symbol, quantity)
open_symbol_q.append((symbol, quantity))
# Only opened orders will be closed
item.symbol_q = open_symbol_q
item.holding_period += 1
# We need to remove closed part of portfolio after loop. Otherwise it will miss one item in self.managed_queue.
if remove_item:
self.managed_queue.remove(remove_item)
def Selection(self):
self.selection_flag = True
class RebalanceQueueItem():
def __init__(self, symbol_q):
# symbol/quantity collections
self.symbol_q = symbol_q
self.holding_period = 0
class SymbolData():
def __init__(self, symbol, period):
self.Symbol = symbol
self.Price = RollingWindow[float](period)
def update(self, value):
self.Price.Add(value)
def is_ready(self):
return self.Price.IsReady
def maximum(self):
return max([x for x in self.Price])
def get_latest_price(self):
return [x for x in self.Price][0]
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))