| Overall Statistics |
|
Total Orders
2968
Average Win
1.39%
Average Loss
-1.72%
Compounding Annual Return
-0.085%
Drawdown
79.800%
Expectancy
0.014
Start Equity
100000
End Equity
97853.79
Net Profit
-2.146%
Sharpe Ratio
-0.01
Sortino Ratio
-0.012
Probabilistic Sharpe Ratio
0.000%
Loss Rate
44%
Win Rate
56%
Profit-Loss Ratio
0.81
Alpha
0.002
Beta
-0.1
Annual Standard Deviation
0.205
Annual Variance
0.042
Information Ratio
-0.163
Tracking Error
0.27
Treynor Ratio
0.021
Total Fees
$2059.92
Estimated Strategy Capacity
$0
Lowest Capacity Asset
CME_LB1.QuantpediaFutures 2S
Portfolio Turnover
3.54%
|
# https://quantpedia.com/strategies/1-month-momentum-in-commodities/
#
# Create a universe of tradable commodity futures. Rank futures performance for each commodity for the last 12 months and divide them into quintiles.
# Go long on the quintile with the highest momentum and go short on the quintile with the lowest momentum. Rebalance each month.
#region imports
from AlgorithmImports import *
#endregion
class MomentumEffectCommodities(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
tickers: List[str] = [
"CME_S1", # Soybean Futures, Continuous Contract
"CME_W1", # Wheat Futures, Continuous Contract
"CME_SM1", # Soybean Meal Futures, Continuous Contract
"CME_BO1", # Soybean Oil Futures, Continuous Contract
"CME_C1", # Corn Futures, Continuous Contract
"CME_O1", # Oats Futures, Continuous Contract
"CME_LC1", # Live Cattle Futures, Continuous Contract
"CME_FC1", # Feeder Cattle Futures, Continuous Contract
"CME_LN1", # Lean Hog Futures, Continuous Contract
"CME_GC1", # Gold Futures, Continuous Contract
"CME_SI1", # Silver Futures, Continuous Contract
"CME_PL1", # Platinum Futures, Continuous Contract
"CME_CL1", # Crude Oil Futures, Continuous Contract
"CME_HG1", # Copper Futures, Continuous Contract
"CME_LB1", # Random Length Lumber Futures, Continuous Contract
"CME_NG1", # Natural Gas (Henry Hub) Physical Futures, Continuous Contract
"CME_PA1", # Palladium Futures, Continuous Contract
"CME_RR1", # Rough Rice Futures, Continuous Contract
"CME_DA1", # Class III Milk Futures
"ICE_RS1", # Canola Futures, Continuous Contract
"ICE_GO1", # Gas Oil Futures, Continuous Contract
"CME_RB2", # Gasoline Futures, Continuous Contract
"CME_KW2", # Wheat Kansas, Continuous Contract
"ICE_WT1", # WTI Crude Futures, Continuous Contract
"ICE_CC1", # Cocoa Futures, Continuous Contract
"ICE_CT1", # Cotton No. 2 Futures, Continuous Contract
"ICE_KC1", # Coffee C Futures, Continuous Contract
"ICE_O1", # Heating Oil Futures, Continuous Contract
"ICE_OJ1", # Orange Juice Futures, Continuous Contract
"ICE_SB1", # Sugar No. 11 Futures, Continuous Contract
]
self.period: int = 12 * 21
self.quantile: int = 5
self.SetWarmUp(self.period, Resolution.Daily)
self.data: Dict[Symbol, RateOfChange] = {}
for ticker in tickers:
data: Security = self.AddData(QuantpediaFutures, ticker, Resolution.Daily)
data.SetFeeModel(CustomFeeModel())
data.SetLeverage(5)
self.data[data.Symbol] = self.ROC(ticker, self.period, Resolution.Daily)
self.recent_month: int = -1
def OnData(self, slice: Slice) -> None:
if self.IsWarmingUp:
return
if any([self.securities[symbol].get_last_data() and self.time.date() > QuantpediaFutures.get_last_update_date()[symbol] for symbol in list(self.data.keys())]):
self.liquidate()
return
# rebalance once a month
if self.recent_month == self.Time.month:
return
self.recent_month = self.Time.month
perf: Dict[Symbol, float] = {
x[0] : x[1].Current.Value for x in self.data.items() if self.data[x[0]].IsReady and x[0] in slice and slice[x[0]]
}
long: List[Symbol] = []
short: List[Symbol] = []
if len(perf) >= self.quantile:
sorted_by_performance: List[Symbol] = sorted(perf, key = perf.get, reverse=True)
quintile: int = int(len(sorted_by_performance) / self.quantile)
long = sorted_by_performance[:quintile]
short = sorted_by_performance[-quintile:]
# trade execution
invested: List[Symbol] = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long + short:
self.Liquidate(symbol)
for symbol in long:
self.SetHoldings(symbol, 1 / len(long))
for symbol in short:
self.SetHoldings(symbol, -1 / len(short))
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
_last_update_date:Dict[str, datetime.date] = {}
@staticmethod
def get_last_update_date() -> Dict[str, datetime.date]:
return QuantpediaFutures._last_update_date
def GetSource(self, config:SubscriptionDataConfig, date:datetime, isLiveMode:bool) -> SubscriptionDataSource:
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config:SubscriptionDataConfig, line:str, date:datetime, isLiveMode:bool) -> BaseData:
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
# store last update date
if config.Symbol not in QuantpediaFutures._last_update_date:
QuantpediaFutures._last_update_date[config.Symbol] = datetime(1,1,1).date()
if data.Time.date() > QuantpediaFutures._last_update_date[config.Symbol]:
QuantpediaFutures._last_update_date[config.Symbol] = data.Time.date()
return data
# Custom fee model.
class CustomFeeModel():
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))