| Overall Statistics |
|
Total Trades
1570
Average Win
0.17%
Average Loss
-0.21%
Compounding Annual Return
2.573%
Drawdown
29.500%
Expectancy
0.265
Net Profit
73.065%
Sharpe Ratio
0.286
Probabilistic Sharpe Ratio
0.013%
Loss Rate
30%
Win Rate
70%
Profit-Loss Ratio
0.80
Alpha
0.026
Beta
-0.016
Annual Standard Deviation
0.087
Annual Variance
0.008
Information Ratio
-0.25
Tracking Error
0.198
Treynor Ratio
-1.528
Total Fees
$179.02
Estimated Strategy Capacity
$0
Lowest Capacity Asset
CME_MP1.QuantpediaFutures 2S
|
# https://quantpedia.com/strategies/fx-carry-trade/
#
# Create an investment universe consisting of several currencies (10-20). Go long three currencies with the highest central bank prime rates and
# go short three currencies with the lowest central bank prime rates. The cash not used as the margin is invested in overnight rates. The strategy
# is rebalanced monthly.
import data_tools
class ForexCarryTrade(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
# Source: https://www.quandl.com/data/OECD-Organisation-for-Economic-Co-operation-and-Development
self.symbols = {
"CME_AD1" : "OECD/KEI_IR3TIB01_AUS_ST_M", # Australian Dollar Futures, Continuous Contract #1
"CME_BP1" : "OECD/KEI_IR3TIB01_GBR_ST_M", # British Pound Futures, Continuous Contract #1
"CME_CD1" : "OECD/KEI_IR3TIB01_CAN_ST_M", # Canadian Dollar Futures, Continuous Contract #1
"CME_EC1" : "OECD/KEI_IR3TIB01_EA19_ST_M", # Euro FX Futures, Continuous Contract #1
"CME_JY1" : "OECD/KEI_IR3TIB01_JPN_ST_M", # Japanese Yen Futures, Continuous Contract #1
"CME_MP1" : "OECD/KEI_IR3TIB01_MEX_ST_M", # Mexican Peso Futures, Continuous Contract #1
"CME_NE1" : "OECD/KEI_IR3TIB01_NZL_ST_M", # New Zealand Dollar Futures, Continuous Contract #1
"CME_SF1" : "SNB/ZIMOMA" # Swiss Franc Futures, Continuous Contract #1
}
for symbol, rate_symbol in self.symbols.items():
self.AddData(data_tools.QuandlValue, rate_symbol, Resolution.Daily)
data = self.AddData(data_tools.QuantpediaFutures, symbol, Resolution.Daily)
data.SetFeeModel(data_tools.CustomFeeModel(self))
data.SetLeverage(5)
self.Schedule.On(self.DateRules.MonthStart("CME_AD1"), self.TimeRules.AfterMarketOpen("CME_AD1"), self.Rebalance)
def Rebalance(self):
# Interbank rate sorting.
sorted_by_rate = sorted([y for y in self.symbols if self.Securities.ContainsKey(self.symbols[y]) and self.Securities[y].Price != 0], key = lambda x: self.Securities[self.symbols[x]].Price, reverse = True)
traded_count = 3
long = [x for x in sorted_by_rate[:traded_count]]
short = [x for x in sorted_by_rate[-traded_count:]]
# Trade execution
invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long + short:
self.Liquidate(symbol)
for symbol in long:
self.SetHoldings(symbol, 1 / len(long))
for symbol in short:
self.SetHoldings(symbol, -1 / len(short))
# Quandl "value" data
class QuandlValue(PythonQuandl):
def __init__(self):
self.ValueColumnName = 'Value'
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
return data
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))