| Overall Statistics |
|
Total Trades
329
Average Win
1.56%
Average Loss
-0.96%
Compounding Annual Return
4.292%
Drawdown
31.700%
Expectancy
0.409
Net Profit
78.919%
Sharpe Ratio
0.227
Probabilistic Sharpe Ratio
0.274%
Loss Rate
46%
Win Rate
54%
Profit-Loss Ratio
1.63
Alpha
-0.019
Beta
0.494
Annual Standard Deviation
0.09
Annual Variance
0.008
Information Ratio
-0.657
Tracking Error
0.091
Treynor Ratio
0.041
Total Fees
$2.54
Estimated Strategy Capacity
$750000000.00
Lowest Capacity Asset
SPX 32BWJHCIYLROU|SPX 31
Portfolio Turnover
0.07%
|
# https://quantpedia.com/strategies/dispersion-trading/
#
# The investment universe consists of stocks from the S&P 100 index. Trading vehicles are options on stocks from this index and also options on the index itself. The investor uses analyst forecasts of earnings per share
# from the Institutional Brokers Estimate System (I/B/E/S) database and computes for each firm the mean absolute difference scaled by an indicator of earnings uncertainty (see page 24 in the source academic paper for
# detailed methodology). Each month, investor sorts stocks into quintiles based on the size of belief disagreement. He buys puts of stocks with the highest belief disagreement and sells the index puts with Black-Scholes
# deltas ranging from -0.8 to -0.2.
#
# QC Implementation:
# - Due to lack of data, strategy only buys puts of 100 liquid US stocks and sells the SPX index puts.
#region imports
from AlgorithmImports import *
from numpy import floor
#endregion
class DispersionTrading(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2010, 1, 1)
self.SetCash(1000000)
self.min_expiry = 20
self.max_expiry = 60
self.index_symbol = self.AddIndex('SPX').Symbol
self.percentage_traded = 1.0
self.spx_contract = None
self.selected_symbols = []
self.subscribed_contracts = {}
self.coarse_count = 100
self.UniverseSettings.Resolution = Resolution.Minute
self.AddUniverse(self.CoarseSelectionFunction)
self.SetSecurityInitializer(lambda x: x.SetDataNormalizationMode(DataNormalizationMode.Raw))
self.UniverseSettings.DataNormalizationMode = DataNormalizationMode.Raw
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(5)
def CoarseSelectionFunction(self, coarse):
# rebalance on SPX contract expiration (should be on monthly basis)
if len(self.selected_symbols) != 0:
return Universe.Unchanged
# select top n stocks by dollar volume
selected = sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa' and x.Price > 5],
key=lambda x: x.DollarVolume, reverse=True)[:self.coarse_count]
self.selected_symbols = [x.Symbol for x in selected]
return self.selected_symbols
def OnData(self, data):
# liquidate portfolio, when SPX contract is about to expire in 2 days
if self.index_symbol in self.subscribed_contracts and self.subscribed_contracts[self.index_symbol].ID.Date.date() - timedelta(2) <= self.Time.date():
self.subscribed_contracts.clear() # perform new subscribtion
self.selected_symbols.clear() # perform new selection
self.Liquidate()
if len(self.subscribed_contracts) == 0:
if self.Portfolio.Invested:
self.Liquidate()
# NOTE order is important, index should come first
for symbol in [self.index_symbol] + self.selected_symbols:
# subscribe to contract
contracts = self.OptionChainProvider.GetOptionContractList(symbol, self.Time)
# get current price for stock
underlying_price = self.Securities[symbol].Price
# get strikes from stock contracts
strikes = [i.ID.StrikePrice for i in contracts]
# check if there is at least one strike
if len(strikes) <= 0:
continue
# at the money
atm_strike = min(strikes, key=lambda x: abs(x-underlying_price))
# filtred contracts based on option rights and strikes
atm_puts = [i for i in contracts if i.ID.OptionRight == OptionRight.Put and
i.ID.StrikePrice == atm_strike and
self.min_expiry <= (i.ID.Date - self.Time).days <= self.max_expiry]
# index contract is found
if symbol == self.index_symbol and len(atm_puts) == 0:
# cancel whole selection since index contract was not found
return
# make sure there are enough contracts
if len(atm_puts) > 0:
# sort by expiry
atm_put = sorted(atm_puts, key = lambda item: item.ID.Date, reverse=True)[0]
# add contract
option = self.AddOptionContract(atm_put, Resolution.Minute)
option.PriceModel = OptionPriceModels.CrankNicolsonFD()
option.SetDataNormalizationMode(DataNormalizationMode.Raw)
# store subscribed atm put contract
self.subscribed_contracts[symbol] = atm_put
# perform trade, when spx and stocks contracts are selected
if not self.Portfolio.Invested and len(self.subscribed_contracts) != 0 and self.index_symbol in self.subscribed_contracts:
index_option_contract = self.subscribed_contracts[self.index_symbol]
# make sure subscribed SPX contract has data
if self.Securities.ContainsKey(index_option_contract):
if self.Securities[index_option_contract].Price != 0 and self.Securities[index_option_contract].IsTradable:
# sell SPX ATM put contract
self.Securities[index_option_contract].MarginModel = BuyingPowerModel(2)
price = self.Securities[self.index_symbol].Price
if price != 0:
q = floor((self.Portfolio.TotalPortfolioValue * self.percentage_traded) / (price*100))
self.Sell(index_option_contract, q)
# buy stock's ATM put contracts
long_count = len(self.subscribed_contracts) - 1 # minus index symbol
for stock_symbol, stock_option_contract in self.subscribed_contracts.items():
if stock_symbol == self.index_symbol:
continue
if self.Securities[stock_option_contract].Price != 0 and self.Securities[stock_option_contract].IsTradable:
# buy contract
self.Securities[stock_option_contract].MarginModel = BuyingPowerModel(2)
if self.Securities.ContainsKey(stock_option_contract):
price = self.Securities[stock_symbol].Price
if price != 0:
q = floor(((self.Portfolio.TotalPortfolioValue / long_count) * self.percentage_traded) / (price*100))
self.Buy(stock_option_contract, q)
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))