| Overall Statistics |
|
Total Trades
1745
Average Win
0.39%
Average Loss
-0.57%
Compounding Annual Return
-0.545%
Drawdown
41.200%
Expectancy
-0.013
Net Profit
-11.141%
Sharpe Ratio
-0.022
Probabilistic Sharpe Ratio
0.000%
Loss Rate
41%
Win Rate
59%
Profit-Loss Ratio
0.68
Alpha
-0.001
Beta
-0.007
Annual Standard Deviation
0.076
Annual Variance
0.006
Information Ratio
-0.398
Tracking Error
0.193
Treynor Ratio
0.235
Total Fees
$1144.71
Estimated Strategy Capacity
$0
Lowest Capacity Asset
CME_CD1.QuantpediaFutures 2S
|
# https://quantpedia.com/strategies/currency-momentum-factor/
#
# Create an investment universe consisting of several currencies (10-20). Go long three currencies with the highest 12-month momentum against USD
# and go short three currencies with the lowest 12-month momentum against USD. Cash not used as margin invest on overnight rates. Rebalance monthly.
import data_tools
class CurrencyMomentumFactor(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.data = {}
self.period = 12 * 21
self.SetWarmUp(self.period)
self.symbols = [
"CME_AD1", # Australian Dollar Futures, Continuous Contract #1
"CME_BP1", # British Pound Futures, Continuous Contract #1
"CME_CD1", # Canadian Dollar Futures, Continuous Contract #1
"CME_EC1", # Euro FX Futures, Continuous Contract #1
"CME_JY1", # Japanese Yen Futures, Continuous Contract #1
"CME_MP1", # Mexican Peso Futures, Continuous Contract #1
"CME_NE1", # New Zealand Dollar Futures, Continuous Contract #1
"CME_SF1" # Swiss Franc Futures, Continuous Contract #1
]
for symbol in self.symbols:
data = self.AddData(data_tools.QuantpediaFutures, symbol, Resolution.Daily)
data.SetFeeModel(data_tools.CustomFeeModel(self))
data.SetLeverage(5)
self.data[symbol] = self.ROC(symbol, self.period, Resolution.Daily)
self.Schedule.On(self.DateRules.MonthStart(self.symbols[0]), self.TimeRules.AfterMarketOpen(self.symbols[0]), self.Rebalance)
def Rebalance(self):
sorted_by_performance = sorted([x for x in self.data.items() if x[1].IsReady], key = lambda x: x[1].Current.Value, reverse = True)
long = [x[0] for x in sorted_by_performance[:3]]
short = [x[0] for x in sorted_by_performance[-3:]]
# Trade execution.
invested = [x.Key.Value for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long + short:
self.Liquidate(symbol)
for symbol in long:
self.SetHoldings(symbol, 1 / len(long))
for symbol in short:
self.SetHoldings(symbol, -1 / len(short))
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# Quandl "value" data
class QuandlValue(PythonQuandl):
def __init__(self):
self.ValueColumnName = 'Value'
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
return data