| Overall Statistics |
|
Total Trades
55
Average Win
9.02%
Average Loss
-6.40%
Compounding Annual Return
7.667%
Drawdown
52.800%
Expectancy
0.695
Net Profit
153.135%
Sharpe Ratio
0.396
Probabilistic Sharpe Ratio
0.777%
Loss Rate
30%
Win Rate
70%
Profit-Loss Ratio
1.41
Alpha
0.099
Beta
-0.085
Annual Standard Deviation
0.23
Annual Variance
0.053
Information Ratio
0.004
Tracking Error
0.308
Treynor Ratio
-1.077
Total Fees
$254.43
|
# https://quantpedia.com/strategies/value-factor-effect-within-countries/
#
# The investment universe consists of 32 countries with easily accessible equity markets (via ETFs, for example). At the end of every year,
# the investor calculates Shiller’s “CAPE” Cyclically Adjusted PE) ratio, for each country in his investment universe. CAPE is the ratio of
# the real price of the equity market (adjusted for inflation) to the 10-year average of the country’s equity index (again adjusted for inflation).
# The whole methodology is explained well on Shiller’s home page (http://www.econ.yale.edu/~shiller/data.htm) or
# http://turnkeyanalyst.com/2011/10/the-shiller-pe-ratio/). The investor then invests in the cheapest 33% of countries from his sample if those
# countries have a CAPE below 15. The portfolio is equally weighted (the investor holds 0% cash instead of countries with a CAPE higher than 15)
# and rebalanced yearly.
from fk_tools import CustomFeeModel
class ValueFactorCAPEEffectwithinCountries(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2008, 1, 1)
self.SetCash(100000)
self.symbols = {
"Australia" : "EWA", # iShares MSCI Australia Index ETF
"Brazil" : "EWZ", # iShares MSCI Brazil Index ETF
"Canada" : "EWC", # iShares MSCI Canada Index ETF
"Switzerland" : "EWL", # iShares MSCI Switzerland Index ETF
"China" : "FXI", # iShares China Large-Cap ETF
"France" : "EWQ", # iShares MSCI France Index ETF
"Germany" : "EWG", # iShares MSCI Germany ETF
"Hong Kong" : "EWH", # iShares MSCI Hong Kong Index ETF
"Italy" : "EWI", # iShares MSCI Italy Index ETF
"Japan" : "EWJ", # iShares MSCI Japan Index ETF
"Korea" : "EWY", # iShares MSCI South Korea ETF
"Mexico" : "EWW", # iShares MSCI Mexico Inv. Mt. Idx
"Netherlands" : "EWN", # iShares MSCI Netherlands Index ETF
"South Africa" : "EZA", # iShares MSCI South Africe Index ETF
"Singapore" : "EWS", # iShares MSCI Singapore Index ETF
"Spain" : "EWP", # iShares MSCI Spain Index ETF
"Sweden" : "EWD", # iShares MSCI Sweden Index ETF
"Taiwan" : "EWT", # iShares MSCI Taiwan Index ETF
"UK" : "EWU", # iShares MSCI United Kingdom Index ETF
"USA" : "SPY", # SPDR S&P 500 ETF
"Russia" : "ERUS", # iShares MSCI Russia ETF
"Israel" : "EIS", # iShares MSCI Israel ETF
"India" : "INDA", # iShares MSCI India ETF
"Poland" : "EPOL", # iShares MSCI Poland ETF
"Turkey" : "TUR" # iShares MSCI Turkey ETF
}
for country, etf_symbol in self.symbols.items():
data = self.AddEquity(etf_symbol, Resolution.Daily)
data.SetFeeModel(CustomFeeModel(self))
# CAPE data import.
self.AddData(CAPE, 'CAPE', Resolution.Daily)
self.month = 11
self.Schedule.On(self.DateRules.MonthStart('EWA'), self.TimeRules.AfterMarketOpen('EWA'), self.Rebalance)
def Rebalance(self):
self.month += 1
if self.month > 12:
self.month = 1
if self.month != 12:
return
price = {}
for country, etf_symbol in self.symbols.items():
if self.Securities.ContainsKey('CAPE') and self.Securities.ContainsKey(etf_symbol):
cape_data = self.Securities['CAPE'].GetLastData()
if cape_data:
country_cape = cape_data.GetProperty(country)
if country_cape < 15:
etf_price = self.Securities[etf_symbol].Price
if etf_price != 0:
price[etf_symbol] = etf_price
long = []
# Cape and price sorting.
if len(price) != 0:
sorted_by_price = sorted(price.items(), key = lambda x: x[1], reverse = True)
tercile = int(len(sorted_by_price) / 3)
long = [x[0] for x in sorted_by_price[-tercile:]]
# Trade execution.
invested = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in long:
self.Liquidate(symbol)
for symbol in long:
if self.Securities[etf_symbol].Price != 0 and self.Securities[etf_symbol].IsTradable:
self.SetHoldings(symbol, 1 / len(long))
# NOTE: IMPORTANT: Data order must be ascending (datewise)
# Data source: https://indices.barclays/IM/21/en/indices/static/historic-cape.app
class CAPE(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/economic/cape_by_country.csv", SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = CAPE()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%Y-%m-%d") + timedelta(days=1)
data['Australia'] = float(split[1])
data['Brazil'] = float(split[2])
data['Canada'] = float(split[3])
data['Switzerland'] = float(split[4])
data['China'] = float(split[5])
data['France'] = float(split[6])
data['Germany'] = float(split[7])
data['Hong Kong'] = float(split[8])
data['India'] = float(split[9])
data['Israel'] = float(split[10])
data['Italy'] = float(split[11])
data['Japan'] = float(split[12])
data['Korea'] = float(split[13])
data['Mexico'] = float(split[14])
data['Netherlands'] = float(split[15])
data['Poland'] = float(split[16])
data['Russia'] = float(split[17])
data['South Africa'] = float(split[18])
data['Singapore'] = float(split[19])
data['Spain'] = float(split[20])
data['Sweden'] = float(split[21])
data['Taiwan'] = float(split[22])
data['Turkey'] = float(split[23])
data['UK'] = float(split[24])
data['USA'] = float(split[25])
data.Value = float(split[1])
return data
import numpy as np
from scipy.optimize import minimize
sp100_stocks = ['AAPL','MSFT','AMZN','FB','BRKB','GOOGL','GOOG','JPM','JNJ','V','PG','XOM','UNH','BAC','MA','T','DIS','INTC','HD','VZ','MRK','PFE','CVX','KO','CMCSA','CSCO','PEP','WFC','C','BA','ADBE','WMT','CRM','MCD','MDT','BMY','ABT','NVDA','NFLX','AMGN','PM','PYPL','TMO','COST','ABBV','ACN','HON','NKE','UNP','UTX','NEE','IBM','TXN','AVGO','LLY','ORCL','LIN','SBUX','AMT','LMT','GE','MMM','DHR','QCOM','CVS','MO','LOW','FIS','AXP','BKNG','UPS','GILD','CHTR','CAT','MDLZ','GS','USB','CI','ANTM','BDX','TJX','ADP','TFC','CME','SPGI','COP','INTU','ISRG','CB','SO','D','FISV','PNC','DUK','SYK','ZTS','MS','RTN','AGN','BLK']
def MonthDiff(d1, d2):
return (d1.year - d2.year) * 12 + d1.month - d2.month
def Return(values):
return (values[-1] - values[0]) / values[0]
def Volatility(values):
values = np.array(values)
returns = (values[1:] - values[:-1]) / values[:-1]
return np.std(returns)
def GetFutureMulitpliers(algorithm):
symbol_multiplier = {}
csv_string_file = algorithm.Download('data.quantpedia.com/backtesting_data/futures/contract_multiplier.csv')
mulitpliers_lines = csv_string_file.split('\r\n')
for line in mulitpliers_lines:
symbol, multiplier = line.split(';')
symbol_multiplier[symbol] = multiplier
return symbol_multiplier
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# Quandl free data
class QuandlFutures(PythonQuandl):
def __init__(self):
self.ValueColumnName = "settle"
# Quandl short interest data.
class QuandlFINRA_ShortVolume(PythonQuandl):
def __init__(self):
self.ValueColumnName = 'SHORTVOLUME' # also 'TOTALVOLUME' is accesible
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
return data
# Commitments of Traders data.
# NOTE: IMPORTANT: Data order must be ascending (datewise).
# Data source: https://commitmentsoftraders.org/cot-data/
# Data description: https://commitmentsoftraders.org/wp-content/uploads/Static/CoTData/file_key.html
class CommitmentsOfTraders(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/cot/{0}.PRN".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
# File example.
# DATE OPEN HIGH LOW CLOSE VOLUME OI
# ---- ---- ---- --- ----- ------ --
# DATE LARGE SPECULATOR COMMERCIAL HEDGER SMALL TRADER
# LONG SHORT LONG SHORT LONG SHORT
def Reader(self, config, line, date, isLiveMode):
data = CommitmentsOfTraders()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(',')
# Prevent lookahead bias.
data.Time = datetime.strptime(split[0], "%Y%m%d") + timedelta(days=1)
data['LARGE_SPECULATOR_LONG'] = int(split[1])
data['LARGE_SPECULATOR_SHORT'] = int(split[2])
data['COMMERCIAL_HEDGER_LONG'] = int(split[3])
data['COMMERCIAL_HEDGER_SHORT'] = int(split[4])
data['SMALL_TRADER_LONG'] = int(split[5])
data['SMALL_TRADER_SHORT'] = int(split[6])
data.Value = int(split[1])
return data
# NOTE: Manager for new trades. It's represented by certain count of equally weighted brackets for long and short positions.
# If there's a place for new trade, it will be managed for time of holding period.
class TradeManager():
def __init__(self, algorithm, long_size, short_size, holding_period):
self.algorithm = algorithm # algorithm to execute orders in.
self.long_size = long_size
self.short_size = short_size
self.long_len = 0
self.short_len = 0
# Arrays of ManagedSymbols
self.symbols = []
self.holding_period = holding_period # Days of holding.
# Add stock symbol object
def Add(self, symbol, long_flag):
# Open new long trade.
managed_symbol = ManagedSymbol(symbol, self.holding_period, long_flag)
if long_flag:
# If there's a place for it.
if self.long_len < self.long_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, 1 / self.long_size)
self.long_len += 1
else:
self.algorithm.Log("There's not place for additional trade.")
# Open new short trade.
else:
# If there's a place for it.
if self.short_len < self.short_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, - 1 / self.short_size)
self.short_len += 1
else:
self.algorithm.Log("There's not place for additional trade.")
# Decrement holding period and liquidate symbols.
def TryLiquidate(self):
symbols_to_delete = []
for managed_symbol in self.symbols:
managed_symbol.days_to_liquidate -= 1
# Liquidate.
if managed_symbol.days_to_liquidate == 0:
symbols_to_delete.append(managed_symbol)
self.algorithm.Liquidate(managed_symbol.symbol)
if managed_symbol.long_flag: self.long_len -= 1
else: self.short_len -= 1
# Remove symbols from management.
for managed_symbol in symbols_to_delete:
self.symbols.remove(managed_symbol)
def LiquidateTicker(self, ticker):
symbol_to_delete = None
for managed_symbol in self.symbols:
if managed_symbol.symbol.Value == ticker:
self.algorithm.Liquidate(managed_symbol.symbol)
symbol_to_delete = managed_symbol
if managed_symbol.long_flag: self.long_len -= 1
else: self.short_len -= 1
break
if symbol_to_delete: self.symbols.remove(symbol_to_delete)
else: self.algorithm.Debug("Ticker is not held in portfolio!")
class ManagedSymbol():
def __init__(self, symbol, days_to_liquidate, long_flag):
self.symbol = symbol
self.days_to_liquidate = days_to_liquidate
self.long_flag = long_flag
class PortfolioOptimization(object):
def __init__(self, df_return, risk_free_rate, num_assets):
self.daily_return = df_return
self.risk_free_rate = risk_free_rate
self.n = num_assets # numbers of risk assets in portfolio
self.target_vol = 0.05
def annual_port_return(self, weights):
# calculate the annual return of portfolio
return np.sum(self.daily_return.mean() * weights) * 252
def annual_port_vol(self, weights):
# calculate the annual volatility of portfolio
return np.sqrt(np.dot(weights.T, np.dot(self.daily_return.cov() * 252, weights)))
def min_func(self, weights):
# method 1: maximize sharp ratio
return - self.annual_port_return(weights) / self.annual_port_vol(weights)
# method 2: maximize the return with target volatility
#return - self.annual_port_return(weights) / self.target_vol
def opt_portfolio(self):
# maximize the sharpe ratio to find the optimal weights
cons = ({'type': 'eq', 'fun': lambda x: np.sum(x) - 1})
bnds = tuple((0, 1) for x in range(2)) + tuple((0, 0.25) for x in range(self.n - 2))
opt = minimize(self.min_func, # object function
np.array(self.n * [1. / self.n]), # initial value
method='SLSQP', # optimization method
bounds=bnds, # bounds for variables
constraints=cons) # constraint conditions
opt_weights = opt['x']
return opt_weights