| Overall Statistics |
|
Total Orders
22265
Average Win
0.13%
Average Loss
-0.14%
Compounding Annual Return
-0.311%
Drawdown
59.300%
Expectancy
-0.008
Start Equity
100000
End Equity
92400.84
Net Profit
-7.599%
Sharpe Ratio
-0.133
Sortino Ratio
-0.126
Probabilistic Sharpe Ratio
0.000%
Loss Rate
47%
Win Rate
53%
Profit-Loss Ratio
0.88
Alpha
-0.013
Beta
-0.105
Annual Standard Deviation
0.126
Annual Variance
0.016
Information Ratio
-0.266
Tracking Error
0.217
Treynor Ratio
0.161
Total Fees
$969.60
Estimated Strategy Capacity
$140000000.00
Lowest Capacity Asset
TDG TGZ66QQM06SL
Portfolio Turnover
2.08%
|
# https://quantpedia.com/strategies/residual-momentum-factor/
#
# The investment universe consists of all domestic, primary stocks listed on the New York (NYSE), American (AMEX), and NASDAQ
# stock markets with a price higher than $1. Closed-end funds, REITs, unit trusts, ADRs, and foreign stocks are removed. The
# 10% largest stocks in terms of market capitalization are then selected for trading.
# The residual momentum strategy is defined as a zero-investment top-minus-bottom decile portfolio based on ranking stocks
# every month on their past 12-month residual returns, excluding the most recent month, standardized by the standard deviation
# of the residual returns over the same period. Residual returns are estimated each month for all stocks over the past 36 months
# using a regression model. The regression model is calculated every month for all eligible stocks using the Fama and French
# three factors as independent variables. The portfolio is equally weighted and rebalanced monthly.
#
# QC implementation changes:
# - Universe consists of 500 most liquid US stock traded on NYSE, AMEX and NASDAQ.
import numpy as np
from AlgorithmImports import *
import statsmodels.api as sm
class ResidualMomentumFactor(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
# Monthly price data.
self.data:Dict[Symbol, RollingWindow] = {}
self.period:int = 37
# Warmup market monthly data.
self.symbol:Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.data[self.symbol] = RollingWindow[float](self.period)
history = self.History(self.symbol, self.period * 21, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {self.symbol} yet.")
else:
closes = history.loc[self.symbol].close
closes_len = len(closes.keys())
# Find monthly closes.
for index, time_close in enumerate(closes.items()):
# index out of bounds check.
if index + 1 < closes_len:
date_month = time_close[0].date().month
next_date_month = closes.keys()[index + 1].month
# Found last day of month.
if date_month != next_date_month:
self.data[self.symbol].Add(time_close[1])
# Factors.
self.size_factor_symbols:List[Symbol] = [] # Symbol,long_flag tuple.
self.size_factor_vector:RollingWindow = RollingWindow[float](self.period - 1) # Monthly performance.
self.value_factor_symbols:List[Symbol] = []
self.value_factor_vector:RollingWindow = RollingWindow[float](self.period - 1)
# Monthly residual returns for each stock.
self.residual_return:Dict[Symbol, RollingWindow] = {}
self.residual_momentum_period:int = 12
self.long:List[Symbol] = []
self.short:List[Symbol] = []
self.fundamental_count:int = 500
self.fundamental_sorting_key = lambda x: x.DollarVolume
self.factor_quantile:int = 5
self.quantile:int = 10
self.leverage:int = 3
self.last_month:int = -1
self.selection_flag:bool = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.FundamentalSelectionFunction)
self.settings.daily_precise_end_time = False
self.settings.minimum_order_margin_portfolio_percentage = 0.
self.schedule.on(self.date_rules.month_start(self.symbol),
self.time_rules.after_market_open(self.symbol),
self.selection)
def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
for security in changes.AddedSecurities:
security.SetLeverage(self.leverage)
security.SetFeeModel(CustomFeeModel())
def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]:
if not self.selection_flag:
return Universe.Unchanged
# Update the rolling window every month.
for stock in fundamental:
symbol = stock.Symbol
# Store monthly market price.
if symbol == self.symbol:
self.data[self.symbol].Add(stock.AdjustedPrice)
else:
# Store monthly stock price.
if symbol in self.data:
self.data[symbol].Add(stock.AdjustedPrice)
selected:List[Fundamental] = [x for x in fundamental if x.HasFundamentalData and x.Market == 'usa' and x.MarketCap != 0 and x.CompanyReference.IsREIT == 0 and \
((x.SecurityReference.ExchangeId == "NYS") or (x.SecurityReference.ExchangeId == "NAS") or (x.SecurityReference.ExchangeId == "ASE"))
]
if len(selected) > self.fundamental_count:
selected = [x for x in sorted(selected, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count]]
# Warmup price rolling windows.
for stock in selected:
symbol:Symbol = stock.Symbol
if symbol in self.data: continue
self.data[symbol] = RollingWindow[float](self.period)
history = self.History(symbol, self.period * 21, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet.")
continue
closes = history.loc[symbol].close
closes_len = len(closes.keys())
# Find monthly closes.
for index, time_close in enumerate(closes.items()):
# index out of bounds check.
if index + 1 < closes_len:
date_month = time_close[0].date().month
next_date_month = closes.keys()[index + 1].month
# Found last day of month.
if date_month != next_date_month:
self.data[symbol].Add(time_close[1])
selected = [x for x in selected if self.data[x.Symbol].IsReady]
if len(selected) == 0:
return Universe.Unchanged
# Size factor.
sorted_by_market_cap:List[Fundamental] = sorted(selected, key=lambda x: x.MarketCap, reverse=True)
quantile:int = int(len(sorted_by_market_cap) / self.factor_quantile)
size_factor_long:List[Tuple] = [ (i.Symbol, True) for i in sorted_by_market_cap[-quantile:]]
size_factor_short:List[Tuple] = [(i.Symbol, False) for i in sorted_by_market_cap[:quantile]]
# Calculate last month's performance.
if len(self.size_factor_symbols) != 0:
monthly_return:float = self.CalculateFactorPerformance(self.data, self.size_factor_symbols)
if monthly_return != 0:
self.size_factor_vector.Add(monthly_return)
# Store new factor symbols.
self.size_factor_symbols = size_factor_long + size_factor_short
# Value factor.
sorted_by_pb:List[Fundamental] = sorted(selected, key = lambda x:(x.ValuationRatios.PBRatio), reverse=False)
quantile:int = int(len(sorted_by_pb) / self.factor_quantile)
value_factor_long:List[Tuple] = [(i.Symbol, True) for i in sorted_by_pb[:quantile]]
value_factor_short:List[Tuple] = [(i.Symbol, False) for i in sorted_by_pb[-quantile:]]
# Calculate last month's performance.
if len(self.value_factor_symbols) != 0:
monthly_return:float = self.CalculateFactorPerformance(self.data, self.value_factor_symbols)
if monthly_return != 0:
self.value_factor_vector.Add(monthly_return)
# Store new factor symbols.
self.value_factor_symbols = value_factor_long + value_factor_short
# Every factor vector is ready.
if self.size_factor_vector.IsReady and self.value_factor_vector.IsReady:
# Market factor.
if self.symbol in self.data and self.data[self.symbol].IsReady:
market_factor_prices:np.ndarray = np.array([x for x in self.data[self.symbol]])
market_factor:np.ndarray = (market_factor_prices[:-1] - market_factor_prices[1:]) / market_factor_prices[1:]
if len(market_factor) == (self.period - 1):
# Residual return calc.
x:List[List[float]] = [
list(market_factor),
list(self.size_factor_vector),
list(self.value_factor_vector)
]
standardized_residual_momentum:Dict[Symbol, float] = {}
for stock in sorted_by_market_cap:
symbol:Symbol = stock.Symbol
monthly_prices:np.ndarray = np.array([x for x in self.data[symbol]])
monthly_returns:np.ndarray = (monthly_prices[:-1] - monthly_prices[1:]) / monthly_prices[1:]
regression_model = self.MultipleLinearRegression(x, monthly_returns)
alpha:float = regression_model.params[0]
if symbol not in self.residual_return:
self.residual_return[symbol] = RollingWindow[float](self.residual_momentum_period)
self.residual_return[symbol].Add(alpha)
# Residual data for 12 months is ready.
if self.residual_return[symbol].IsReady:
residual_returns:List[float] = [x for x in self.residual_return[symbol]]
standardized_residual_momentum[symbol] = sum(residual_returns) / np.std(residual_returns)
sorted_by_resid_momentum:List[Symbol] = sorted(standardized_residual_momentum, key=standardized_residual_momentum.get , reverse=True)
quantile:int = int(len(sorted_by_resid_momentum) / self.quantile)
self.long = sorted_by_resid_momentum[:quantile]
self.short = sorted_by_resid_momentum[-quantile:]
return self.long + self.short
def OnData(self, data: Slice) -> None:
if not self.selection_flag:
return
self.selection_flag = False
# Trade execution.
targets:List[PortfolioTarget] = []
for i, portfolio in enumerate([self.long, self.short]):
for symbol in portfolio:
if symbol in data and data[symbol]:
targets.append(PortfolioTarget(symbol, ((-1) ** i) / len(portfolio)))
self.SetHoldings(targets, True)
self.long.clear()
self.short.clear()
def CalculateFactorPerformance(self, data, factor_symbols) -> float:
monthly_return = 0
if len(factor_symbols) != 0:
for symbol, long_flag in factor_symbols:
if symbol in data and data[symbol].Count >= 2:
closes = [x for x in data[symbol]]
if long_flag:
monthly_return += ((closes[0] / closes[1] - 1) / len(factor_symbols))
else:
monthly_return -= ((closes[0] / closes[1] - 1) / len(factor_symbols))
return monthly_return
def MultipleLinearRegression(self, x, y):
x = np.array(x).T
x = sm.add_constant(x)
result = sm.OLS(endog=y, exog=x).fit()
return result
def selection(self) -> None:
self.selection_flag = True
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))