| Overall Statistics |
|
Total Trades
11175
Average Win
0.63%
Average Loss
-0.62%
Compounding Annual Return
0.514%
Drawdown
43.600%
Expectancy
0.008
Net Profit
7.212%
Sharpe Ratio
0.112
Probabilistic Sharpe Ratio
0.014%
Loss Rate
50%
Win Rate
50%
Profit-Loss Ratio
1.02
Alpha
0.021
Beta
-0.011
Annual Standard Deviation
0.175
Annual Variance
0.03
Information Ratio
-0.334
Tracking Error
0.256
Treynor Ratio
-1.698
Total Fees
$5177.16
Estimated Strategy Capacity
$130000.00
Lowest Capacity Asset
PRTO VUXW8LG4HG85
|
import numpy as np
from scipy.optimize import minimize
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# NOTE: Manager for new trades. It's represented by certain count of equally weighted brackets for long and short positions.
# If there's a place for new trade, it will be managed for time of holding period.
class TradeManager():
def __init__(self, algorithm, long_size, short_size, holding_period):
self.algorithm = algorithm # algorithm to execute orders in.
self.long_size = long_size
self.short_size = short_size
self.long_len = 0
self.short_len = 0
# Arrays of ManagedSymbols
self.symbols = []
self.holding_period = holding_period # Days of holding.
# Add stock symbol object
def Add(self, symbol, long_flag):
# Open new long trade.
managed_symbol = ManagedSymbol(symbol, self.holding_period, long_flag)
if long_flag:
# If there's a place for it.
if self.long_len < self.long_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, 1 / self.long_size)
self.long_len += 1
else:
self.algorithm.Log("There's not place for additional trade.")
# Open new short trade.
else:
# If there's a place for it.
if self.short_len < self.short_size:
self.symbols.append(managed_symbol)
self.algorithm.SetHoldings(symbol, - 1 / self.short_size)
self.short_len += 1
else:
self.algorithm.Log("There's not place for additional trade.")
# Decrement holding period and liquidate symbols.
def TryLiquidate(self):
symbols_to_delete = []
for managed_symbol in self.symbols:
managed_symbol.days_to_liquidate -= 1
# Liquidate.
if managed_symbol.days_to_liquidate == 0:
symbols_to_delete.append(managed_symbol)
self.algorithm.Liquidate(managed_symbol.symbol)
if managed_symbol.long_flag: self.long_len -= 1
else: self.short_len -= 1
# Remove symbols from management.
for managed_symbol in symbols_to_delete:
self.symbols.remove(managed_symbol)
def LiquidateTicker(self, ticker):
symbol_to_delete = None
for managed_symbol in self.symbols:
if managed_symbol.symbol.Value == ticker:
self.algorithm.Liquidate(managed_symbol.symbol)
symbol_to_delete = managed_symbol
if managed_symbol.long_flag: self.long_len -= 1
else: self.short_len -= 1
break
if symbol_to_delete: self.symbols.remove(symbol_to_delete)
else: self.algorithm.Debug("Ticker is not held in portfolio!")
class ManagedSymbol():
def __init__(self, symbol, days_to_liquidate, long_flag):
self.symbol = symbol
self.days_to_liquidate = days_to_liquidate
self.long_flag = long_flag
# https://quantpedia.com/strategies/reversal-in-post-earnings-announcement-drift/
#
# The investment universe consists of all stocks from NYSE, AMEX, and NASDAQ with active options market (so mostly large-cap stocks).
# Each day investor selects stocks which would have earnings announcement during the next working day. He then checks the abnormal
# performance of these stocks during the previous earnings announcement. Investor goes long decile of stocks with the lowest abnormal
# past earnings announcement performance and goes short stocks with the highest abnormal past performance. Stocks are held for two
# days, and the portfolio is weighted equally.
#
# QC Implementation:
# - Universe consist of stock, which have earnings dates in Quantpedia data.
import data_tools
import numpy as np
from collections import deque
from pandas.tseries.offsets import BDay
class ReversalPostEarningsAnnouncementDrift(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2008, 1, 1) # Earnings dates starts at 2008
self.SetCash(100000)
# EAR last quarter data.
self.ear_data = {}
self.ear_period = 30
self.coarse_count = 500
self.symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
# Daily price data.
self.data = {}
# Custom stock universe from earnings data symbols.
self.symbols = set()
# Import earnigns data.
self.earnings_data = {}
self.first_date = None
csv_string_file = self.Download('data.quantpedia.com/backtesting_data/economic/earning_dates.csv')
lines = csv_string_file.split('\r\n')
for line in lines:
if line == '':
continue
line_split = line.split(';')
date = datetime.strptime(line_split[0], "%Y-%m-%d").date()
if not self.first_date:
self.first_date = date
self.earnings_data[date] = []
for i in range(1, len(line_split)):
symbol = line_split[i]
self.earnings_data[date].append(symbol)
self.symbols.add(symbol)
# Ear quarters history.
self.current_quarter_ears = []
self.previous_quarter_ears = []
# Equally weighted brackets for traded symbols. - 10 symbols long and short, 2 days of holding.
self.trade_manager = data_tools.TradeManager(self, 10, 10, 2)
self.selection_flag = False
self.store_sales_data_flag = True
self.sales_growth_sort_flag = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction, self.FineSelectionFunction)
self.Schedule.On(self.DateRules.MonthStart(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetFeeModel(data_tools.CustomFeeModel(self))
security.SetLeverage(5)
def CoarseSelectionFunction(self, coarse):
# update daily prices
for stock in coarse:
symbol = stock.Symbol
if symbol in self.data:
self.data[symbol].update(self.Time, stock.AdjustedPrice)
# monthly selection
if not self.selection_flag:
return Universe.Unchanged
self.selection_flag = False
# Select every available stock.
selected = [x.Symbol for x in coarse if x.HasFundamentalData and x.Market == 'usa' and x.Price > 5 and x.Symbol.Value in self.symbols]
for symbol in selected + [self.symbol]:
if symbol in self.data:
continue
# warm up stock prices
self.data[symbol] = SymbolData(self.ear_period)
history = self.History(symbol, self.ear_period, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet")
continue
closes = history.loc[symbol].close
for time, close in closes.iteritems():
self.data[symbol].update(self.Time, close)
return [x for x in selected if self.data[x].is_ready()]
def FineSelectionFunction(self, fine):
fine = [x for x in fine if x.EarningReports.FileDate]
# Stocks with last month's earnings.
last_month_date = self.Time - timedelta(self.Time.day)
filered_fine = [x for x in fine if (x.EarningReports.FileDate.year == last_month_date.year and x.EarningReports.FileDate.month == last_month_date.month)]
for stock in filered_fine:
symbol = stock.Symbol
# EAR calc.
# Get 4 days around earnings.
date_from = stock.EarningReports.FileDate.date() - BDay(2)
date_to = stock.EarningReports.FileDate.date() + BDay(1)
# Month of data is ready.
if self.data[self.symbol].is_ready():
market_return = self.data[self.symbol].get_prices([date_from, date_to])
stock_return = self.data[symbol].get_prices([date_from, date_to])
# check if returns are ready
if market_return and stock_return:
ear = stock_return - market_return
ear_data = (stock.EarningReports.FileDate, ear)
self.ear_data[symbol] = ear_data
# Store ear in this month's history.
self.current_quarter_ears.append(ear)
# check if there are any symbols, which can be traded
if len(self.ear_data) == 0:
return Universe.Unchanged
# return symbols from self.ear_data, because they will be traded
return [x for x in self.ear_data]
def OnData(self, data):
# Open trades on earnings day.
date_to_lookup = self.Time.date()
# If there is no earnings data yet.
if date_to_lookup < self.first_date:
return
# Liquidate opened symbols after holding period.
self.trade_manager.TryLiquidate()
# Wait until we have history data for previous three months.
if len(self.previous_quarter_ears) == 0:
return
ear_values = [x for x in self.previous_quarter_ears]
top_ear_decile = np.percentile(ear_values, 90)
bottom_ear_decile = np.percentile(ear_values, 10)
# Open new trades.
if date_to_lookup in self.earnings_data:
symbols_to_trade = [symbol for symbol in self.ear_data if symbol.Value in self.earnings_data[date_to_lookup]]
symbols_to_delete = []
for symbol in symbols_to_trade:
# Last earnings was less than three months ago.
last_earings_date = self.ear_data[symbol][0]
if last_earings_date >= self.Time - timedelta(days = 90):
security = self.Securities[symbol]
if security.Price != 0 and security.IsTradable:
if self.ear_data[symbol][1] >= top_ear_decile:
self.trade_manager.Add(symbol, True)
symbols_to_delete.append(symbol)
elif self.ear_data[symbol][1] <= bottom_ear_decile:
self.trade_manager.Add(symbol, False)
symbols_to_delete.append(symbol)
# Delete already traded symbols from symbol to trade.
for symbol in symbols_to_delete:
del self.ear_data[symbol]
def Selection(self):
self.selection_flag = True
if self.Time.month % 3 == 0:
# Store previous quarter's history.
self.previous_quarter_ears = [x for x in self.current_quarter_ears]
self.current_quarter_ears.clear()
class SymbolData():
def __init__(self, period):
self.closes = deque(maxlen = period)
self.times = deque(maxlen = period)
def update(self, time, close):
self.times.append(time)
self.closes.append(close)
def is_ready(self):
return len(self.closes) == self.closes.maxlen and len(self.times) == self.times.maxlen
def get_prices(self, list_period):
return_prices = []
for time, close in zip(self.times, self.closes):
if time in list_period:
return_prices.append(close)
# check if there are enough data for performance calculation
if len(return_prices) < 2:
return None
return (return_prices[-1] - return_prices[0]) / return_prices[0]