| Overall Statistics |
|
Total Orders
27607
Average Win
0.10%
Average Loss
-0.09%
Compounding Annual Return
7.605%
Drawdown
20.500%
Expectancy
0.115
Start Equity
100000
End Equity
641307.03
Net Profit
541.307%
Sharpe Ratio
0.319
Sortino Ratio
0.456
Probabilistic Sharpe Ratio
0.005%
Loss Rate
49%
Win Rate
51%
Profit-Loss Ratio
1.18
Alpha
0.034
Beta
0.022
Annual Standard Deviation
0.109
Annual Variance
0.012
Information Ratio
-0.03
Tracking Error
0.191
Treynor Ratio
1.569
Total Fees
$915.00
Estimated Strategy Capacity
$21000.00
Lowest Capacity Asset
FNA XSOQ708JLBHH
Portfolio Turnover
0.68%
|
# https://quantpedia.com/strategies/investment-factor/
#
# The investment universe consists of all NYSE, Amex, and NASDAQ stocks. Firstly, stocks are allocated to five Size groups (Small to Big) at the end of each June
# using NYSE market cap breakpoints. Stocks are allocated independently to five Investment (Inv) groups (Low to High) still using NYSE breakpoints.
# The intersections of the two sorts produce 25 Size-Inv portfolios. For portfolios formed in June of year t, Inv is the growth of total assets for
# the fiscal year ending in t-1 divided by total assets at the end of t-1. Long portfolio with the highest Size and simultaneously with the lowest
# Investment. Short portfolio with the highest Size and simultaneously with the highest Investment. The portfolios are value-weighted.
#
# QC implementation changes:
# - The investment universe consists of 3000 largest US stock traded on NYSE, AMEX and NASDAQ with price >= 1$.
# - The portfolios are equally-weighted.
from AlgorithmImports import *
class InvestmentFactor(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100_000)
self.symbol: Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.fundamental_count: int = 3_000
self.fundamental_sorting_key = lambda x: x.MarketCap
self.long: List[Symbol] = []
self.short: List[Symbol] = []
self.quantile: int = 5
self.leverage: int = 3
self.rebalance_month: int = 6
self.min_share_price: float = 1.
self.weight: Dict[Symbol, float] = {}
self.selection_flag: bool = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.FundamentalSelectionFunction)
self.Settings.MinimumOrderMarginPortfolioPercentage = 0
self.Schedule.On(self.DateRules.MonthEnd(self.symbol), self.TimeRules.AfterMarketOpen(self.symbol), self.Selection)
self.settings.daily_precise_end_time = False
def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(self.leverage)
def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]:
if not self.selection_flag:
return Universe.Unchanged
selected: List[Fundamental] = [
x for x in fundamental if x.HasFundamentalData and x.Market == 'usa' and x.MarketCap != 0 and x.Price >= self.min_share_price and \
((x.SecurityReference.ExchangeId == "NYS") or (x.SecurityReference.ExchangeId == "NAS") or (x.SecurityReference.ExchangeId == "ASE")) and \
not np.isnan(x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths) and not np.isnan(x.OperationRatios.TotalAssetsGrowth.OneYear) and \
x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths != 0 and x.OperationRatios.TotalAssetsGrowth.OneYear != 0
]
if len(selected) > self.fundamental_count:
selected = [x for x in sorted(selected, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count]]
# Sorting by investment factor.
sorted_by_inv_factor: List[Fundamental] = sorted(selected, key = lambda x: (x.OperationRatios.TotalAssetsGrowth.OneYear / x.FinancialStatements.BalanceSheet.TotalAssets.TwelveMonths), reverse=True)
if len(sorted_by_inv_factor) >= self.quantile:
quantile: int = int(len(sorted_by_inv_factor) / self.quantile)
self.long = [x.Symbol for x in sorted_by_inv_factor[-quantile:]]
self.short = [x.Symbol for x in sorted_by_inv_factor[:quantile]]
return self.long + self.short
def OnData(self, slice: Slice) -> None:
if not self.selection_flag:
return
self.selection_flag = False
# order execution
targets: List[PortfolioTarget] = []
for i, portfolio in enumerate([self.long, self.short]):
for symbol in portfolio:
if symbol in slice and slice[symbol]:
targets.append(PortfolioTarget(symbol, ((-1) ** i) / len(portfolio)))
self.SetHoldings(targets, True)
self.long.clear()
self.short.clear()
def Selection(self) -> None:
if self.Time.month == self.rebalance_month:
self.selection_flag = True
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))