| Overall Statistics |
|
Total Trades
368
Average Win
1.06%
Average Loss
-0.74%
Compounding Annual Return
1.978%
Drawdown
9.700%
Expectancy
0.343
Net Profit
57.478%
Sharpe Ratio
0.462
Probabilistic Sharpe Ratio
0.052%
Loss Rate
45%
Win Rate
55%
Profit-Loss Ratio
1.42
Alpha
0.012
Beta
0.035
Annual Standard Deviation
0.03
Annual Variance
0.001
Information Ratio
-0.269
Tracking Error
0.159
Treynor Ratio
0.398
Total Fees
$1925.73
Estimated Strategy Capacity
$310000000.00
Lowest Capacity Asset
SPY R735QTJ8XC9X
|
# https://quantpedia.com/strategies/federal-open-market-committee-meeting-effect-in-stocks/
#
# The investor is invested in stocks during FOMC meetings (going long S&P 500 ETF, fund, future, or CFD on a close one day before the meeting and closing position on close after the meeting).
# Otherwise, he is invested in cash during the remaining days. The strategy has very low exposure to the stock market (8 days during the average year); therefore, it can be very easily leveraged
# to gain very significant returns.
#
# QC implementation:
# - FED dates are imported from text file.
from AlgorithmImports import *
from pandas.tseries.offsets import BDay
from datetime import datetime
class FederalOpenMarketCommitteeMeetingEffectinStocks(QCAlgorithm):
def Initialize(self) -> None:
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.market:Symbol = self.AddEquity("SPY", Resolution.Minute).Symbol
self.fed_days_symbol:Symbol = self.AddData(FedDays, 'fed_days', Resolution.Daily, TimeZones.NewYork).Symbol
self.SetWarmUp(1, Resolution.Daily)
FedDays.set_algo(self)
self.recent_day:int = -1
def OnData(self, data:Slice) -> None:
if self.IsWarmingUp: return
if self.fed_days_symbol in data and data[self.fed_days_symbol]:
self.Log(f"New FOMC meeting data arrived: {self.Time}; submitting an MOC order...")
# new fed day data arrived
quantity:float = self.CalculateOrderQuantity(self.market, 1.)
self.MarketOnCloseOrder(self.market, quantity)
self.recent_day = self.Time.day
else:
# other new minute resolution data arrived
if self.Portfolio[self.market].Invested:
if self.Time.day != self.recent_day:
self.recent_day = self.Time.day
self.Log(f"FOMC meeting day; submitting an MOC order to close opened position...")
self.MarketOnCloseOrder(self.market, -self.Portfolio[self.market].Quantity)
class FedDays(PythonData):
algo = None
@staticmethod
def set_algo(algo):
FedDays.algo = algo
def GetSource(self, config:SubscriptionDataConfig, date:datetime, isLiveMode:bool) -> SubscriptionDataSource:
if isLiveMode:
# FedDays.algo.Log(f"Edited GetSource date {FedDays.algo.Time}")
return SubscriptionDataSource("https://data.quantpedia.com/backtesting_data/economic/fed_days.json", SubscriptionTransportMedium.RemoteFile, FileFormat.UnfoldingCollection)
return SubscriptionDataSource("https://data.quantpedia.com/backtesting_data/economic/fed_days.csv", SubscriptionTransportMedium.RemoteFile)
def Reader(self, config:SubscriptionDataConfig, line:str, date:datetime, isLiveMode:bool) -> BaseData:
if isLiveMode:
try:
# FedDays.algo.Log(f"Reader")
objects = []
data = json.loads(line)
end_time = None
for index, sample in enumerate(data):
custom_data = FedDays()
custom_data.Symbol = config.Symbol
custom_data.Time = (datetime.strptime(str(sample["fed_date"]), "%Y-%m-%d") - BDay(1)).replace(hour=9, minute=31)
# FedDays.algo.Log(f"{custom_data.Time}")
end_time = custom_data.Time
objects.append(custom_data)
return BaseDataCollection(end_time, config.Symbol, objects)
except ValueError:
# FedDays.algo.Log(f"Reader Error")
return None
else:
if not (line.strip() and line[0].isdigit()):
return None
custom = FedDays()
custom.Symbol = config.Symbol
custom.Time = (datetime.strptime(line, "%Y-%m-%d") - BDay(1)).replace(hour=9, minute=31)
custom.Value = 0.
custom["fed_date_str"] = line
return custom