| Overall Statistics |
|
Total Trades
7454
Average Win
0.05%
Average Loss
-0.05%
Compounding Annual Return
1.170%
Drawdown
4.000%
Expectancy
0.130
Net Profit
24.747%
Sharpe Ratio
0.654
Loss Rate
46%
Win Rate
54%
Profit-Loss Ratio
1.10
Alpha
0.013
Beta
-0.025
Annual Standard Deviation
0.017
Annual Variance
0
Information Ratio
-0.265
Tracking Error
0.191
Treynor Ratio
-0.45
Total Fees
$0.00
|
# https://quantpedia.com/strategies/time-series-momentum-effect/
#
# The investment universe consists of 24 commodity futures, 12 cross-currency pairs (with 9 underlying currencies), 9 developed equity indices, and 13 developed
# government bond futures.
# Every month, the investor considers whether the excess return of each asset over the past 12 months is positive or negative and goes long on the contract if it is
# positive and short if negative. The position size is set to be inversely proportional to the instrument’s volatility. A univariate GARCH model is used to estimated
# ex-ante volatility in the source paper. However, other simple models could probably be easily used with good results (for example, the easiest one would be using
# historical volatility instead of estimated volatility). The portfolio is rebalanced monthly.
from datetime import datetime
import numpy as np
from collections import deque
import math
class Time_Series_Momentum(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetEndDate(2019, 1, 1)
self.SetCash(100000)
self.symbols = ["CME_AD1", # Australian Dollar Futures, Continuous Contract #1
"CME_BP1", # British Pound Futures, Continuous Contract #1
"CME_CD1", # Canadian Dollar Futures, Continuous Contract #1
"CME_EC1", # Euro FX Futures, Continuous Contract #1
"CME_JY1", # Japanese Yen Futures, Continuous Contract #1
"CME_MP1", # Mexican Peso Futures, Continuous Contract #1
#"CME_NE1",# New Zealand Dollar Futures, Continuous Contract #1 # Short history
"CME_SF1", # Swiss Franc Futures, Continuous Contract #1
"ICE_DX1", # US Dollar Index Futures, Continuous Contract #1
"CME_NQ1", # E-mini NASDAQ 100 Futures, Continuous Contract #1
"EUREX_FDAX1", # DAX Futures, Continuous Contract #1
"CME_ES1", # E-mini S&P 500 Futures, Continuous Contract #1
"EUREX_FSMI1", # SMI Futures, Continuous Contract #1
"EUREX_FSTX1", # STOXX Europe 50 Index Futures, Continuous Contract #1
"LIFFE_FCE1", # CAC40 Index Futures, Continuous Contract #1
"LIFFE_Z1", # FTSE 100 Index Futures, Continuous Contract #1
"SGX_NK1", # SGX Nikkei 225 Index Futures, Continuous Contract #1
"CME_TY1", # 10 Yr Note Futures, Continuous Contract #1
"CME_FV1", # 5 Yr Note Futures, Continuous Contract #1
"CME_TU1", # 2 Yr Note Futures, Continuous Contract #1
#"ASX_XT1", # 10 Year Commonwealth Treasury Bond Futures, Continuous Contract #1 # 'Settlement price' instead of 'settle' on quandl.
#"ASX_YT1", # 3 Year Commonwealth Treasury Bond Futures, Continuous Contract #1 # 'Settlement price' instead of 'settle' on quandl.
"EUREX_FGBL1", # Euro-Bund (10Y) Futures, Continuous Contract #1
#"EUREX_FBTP1", # Long-Term Euro-BTP Futures, Continuous Contract #1 # Short history
"EUREX_FGBM1", # Euro-Bobl Futures, Continuous Contract #1
"EUREX_FGBS1", # Euro-Schatz Futures, Continuous Contract #1
"SGX_JB1", # SGX 10-Year Mini Japanese Government Bond Futures
"LIFFE_R1" # Long Gilt Futures, Continuous Contract #1
#"MX_CGB1", # Ten-Year Government of Canada Bond Futures, Continuous Contract #1 # 'Settlement price' instead of 'settle' on quandl.
]
self.lookup_period = 12*21
self.data = {}
self.SetWarmUp(self.lookup_period)
# True -> Quantpedia data
# False -> Quandl free data
self.use_quantpedia_data = True
if not self.use_quantpedia_data:
self.symbols = ['CHRIS/' + x for x in self.symbols]
for symbol in self.symbols:
data = None
if self.use_quantpedia_data:
data = self.AddData(QuantpediaFutures, symbol, Resolution.Daily)
else:
data = self.AddData(QuandlFutures, symbol, Resolution.Daily)
#data.SetLeverage(2)
self.data[symbol] = deque(maxlen=self.lookup_period)
self.Schedule.On(self.DateRules.MonthStart(self.symbols[0]), self.TimeRules.AfterMarketOpen(self.symbols[0]), self.Rebalance)
def OnData(self, data):
for symbol in self.symbols:
if self.Securities.ContainsKey(symbol):
price = self.Securities[symbol].Price
if price != 0:
self.data[symbol].append(price)
def Rebalance(self):
if self.IsWarmingUp: return
# Return sorting
returns = {}
volatility = {}
for symbol in self.symbols:
if len(self.data[symbol]) == self.data[symbol].maxlen:
prices = [x for x in self.data[symbol]]
returns[symbol] = self.Return(prices)
prices = prices[-60:]
volatility[symbol] = self.Volatility(prices)
#else: return
if len(returns) == 0: return
long = [x[0] for x in returns.items() if x[1] > 0]
short = [x[0] for x in returns.items() if x[1] < 0]
# Volatility weighting
total_vol = sum([1/volatility[x] for x in long + short])
if total_vol == 0: return
weight = {}
for symbol in long + short:
vol = volatility[symbol]
if vol != 0:
weight[symbol] = (1.0 / vol) / total_vol
else:
weight[symbol] = 0
self.Liquidate()
for symbol in long:
self.SetHoldings(symbol, weight[symbol])
for symbol in short:
self.SetHoldings(symbol, -weight[symbol])
def Return(self, history):
return (history[-1] - history[0]) / history[0]
def Volatility(self, history):
prices = np.array(history)
returns = (prices[1:]-prices[:-1])/prices[:-1]
return np.std(returns)
# Quantpedia data
class QuantpediaFutures(PythonData):
def GetSource(self, config, date, isLiveMode):
return SubscriptionDataSource("https://quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config, line, date, isLiveMode):
data = QuantpediaFutures()
data.Symbol = config.Symbol
try:
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['settle'] = float(split[1])
data.Value = float(split[1])
except:
return None
return data
# Quandl free data
class QuandlFutures(PythonQuandl):
def __init__(self):
self.ValueColumnName = "settle"