| Overall Statistics |
|
Total Trades
1581
Average Win
1.08%
Average Loss
-1.03%
Compounding Annual Return
12.170%
Drawdown
64.300%
Expectancy
0.318
Net Profit
1094.173%
Sharpe Ratio
0.54
Probabilistic Sharpe Ratio
0.600%
Loss Rate
36%
Win Rate
64%
Profit-Loss Ratio
1.05
Alpha
0.141
Beta
-0.099
Annual Standard Deviation
0.247
Annual Variance
0.061
Information Ratio
0.186
Tracking Error
0.313
Treynor Ratio
-1.352
Total Fees
$4004.25
Estimated Strategy Capacity
$24000000.00
Lowest Capacity Asset
EXR T142WIKPMLPH
|
# https://quantpedia.com/strategies/momentum-factor-effect-in-reits/
#
# The investment universe consists of all US REITs listed on markets. Every month, the investor ranks all available REITs
# by their past 11-month return one-month lagged and groups them into equally weighted tercile portfolios. He/she then goes
# long on the best performing tercile for three months. One-third of the portfolio is rebalanced this way monthly, and REITs
# are equally weighted. This is not the only way to capture the momentum factor in REITs as a consequential portfolio could be
# formed as a long/short or from quartiles/quintiles/deciles instead of terciles or based on different formation and holding
# periods (additional types of this strategy are stated in the “Other papers” section).
#
# QC implementation changes:
# - Instead of all listed stock, we select 500 most liquid stocks from QC filtered stock universe (~8000 stocks) due to time complexity issues tied to whole universe filtering.
from collections import deque
class MomentumFactorEffectinREITs(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
self.symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
# EW Trenching.
self.holding_period = 3
self.managed_queue = deque(maxlen = self.holding_period + 1)
self.data = {}
self.period = 12 * 21
self.coarse_count = 500
self.selection_flag = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.CoarseSelectionFunction,self.FineSelectionFunction)
self.Schedule.On(self.DateRules.MonthEnd(self.symbol), self.TimeRules.BeforeMarketClose(self.symbol), self.Selection)
def OnSecuritiesChanged(self, changes):
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel(self))
security.SetLeverage(5)
def CoarseSelectionFunction(self, coarse):
if not self.selection_flag:
return Universe.Unchanged
# Update the rolling window every month.
for stock in coarse:
symbol = stock.Symbol
# Store monthly price.
if symbol in self.data:
self.data[symbol].update(stock.AdjustedPrice)
# selected = [x.Symbol for x in coarse if x.HasFundamentalData and x.Market == 'usa']
selected = [x.Symbol
for x in sorted([x for x in coarse if x.HasFundamentalData and x.Market == 'usa'],
key = lambda x: x.DollarVolume, reverse = True)[:self.coarse_count]]
# Warmup price rolling windows.
for symbol in selected:
if symbol in self.data:
continue
self.data[symbol] = SymbolData(symbol, 13)
history = self.History(symbol, self.period * 30, Resolution.Daily)
if history.empty:
self.Log(f"Not enough data for {symbol} yet.")
continue
closes = history.loc[symbol].close
closes_len = len(closes.keys())
# Find monthly closes.
for index, time_close in enumerate(closes.iteritems()):
# index out of bounds check.
if index + 1 < closes_len:
date_month = time_close[0].date().month
next_date_month = closes.keys()[index + 1].month
# Found last day of month.
if date_month != next_date_month:
self.data[symbol].update(time_close[1])
selected = [x for x in selected if self.data[x].is_ready()]
return selected
def FineSelectionFunction(self, fine):
fine = [x.Symbol for x in fine if (x.CompanyReference.IsREIT == 1)]
momentum = {x : self.data[x].performance(1) for x in fine}
long = []
short = []
if len(momentum) != 0:
sorted_by_momentum = sorted(momentum.items(), key = lambda x: x[1], reverse = True)
tercile = int(len(sorted_by_momentum) / 3)
long = [x[0] for x in sorted_by_momentum[:tercile] if not self.IsInvested(x[0])]
short = []
self.managed_queue.append(RebalanceQueueItem(long, short))
return long + short
def IsInvested(self, symbol):
return self.Securities.ContainsKey(symbol) and self.Portfolio[symbol].Invested
def OnData(self, data):
if not self.selection_flag:
return
self.selection_flag = False
# Trade execution
if len(self.managed_queue) == 0: return
# Liquidate first items if queue is full.
if len(self.managed_queue) == self.managed_queue.maxlen:
item_to_liquidate = self.managed_queue.popleft()
for symbol in item_to_liquidate.long_symbols + item_to_liquidate.short_symbols:
self.Liquidate(symbol)
curr_stock_set = self.managed_queue[-1]
if curr_stock_set.count == 0: return
weight = 1 / self.holding_period
# Open new trades.
for symbol in curr_stock_set.long_symbols:
self.SetHoldings(symbol, weight / len(curr_stock_set.long_symbols))
for symbol in curr_stock_set.short_symbols:
self.SetHoldings(symbol, -weight / len(curr_stock_set.short_symbols))
def Selection(self):
self.selection_flag = True
class SymbolData():
def __init__(self, symbol, period):
self.Symbol = symbol
self.Price = RollingWindow[float](period)
def update(self, value):
self.Price.Add(value)
def is_ready(self) -> bool:
return self.Price.IsReady
# Performance, one month skipped.
def performance(self, values_to_skip = 0) -> float:
closes = [x for x in self.Price][values_to_skip:]
return (closes[0] / closes[-1] - 1)
class RebalanceQueueItem():
def __init__(self, long_symbols, short_symbols):
self.long_symbols = long_symbols
self.short_symbols = short_symbols
self.count = len(long_symbols + short_symbols)
# Custom fee model
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))