| Overall Statistics |
|
Total Orders
92168
Average Win
0.04%
Average Loss
-0.04%
Compounding Annual Return
1.674%
Drawdown
47.800%
Expectancy
0.022
Start Equity
100000
End Equity
152550.04
Net Profit
52.550%
Sharpe Ratio
-0.083
Sortino Ratio
-0.092
Probabilistic Sharpe Ratio
0.000%
Loss Rate
50%
Win Rate
50%
Profit-Loss Ratio
1.02
Alpha
-0
Beta
-0.173
Annual Standard Deviation
0.089
Annual Variance
0.008
Information Ratio
-0.241
Tracking Error
0.206
Treynor Ratio
0.042
Total Fees
$2160.41
Estimated Strategy Capacity
$3200000.00
Lowest Capacity Asset
CPG VNH372L1LHET
Portfolio Turnover
3.00%
|
# https://quantpedia.com/strategies/roa-effect-within-stocks/
#
# The investment universe contains all stocks on NYSE and AMEX and Nasdaq with Sales greater than 10 million USD. Stocks are then sorted into
# two halves based on market capitalization. Each half is then divided into deciles based on Return on assets (ROA) calculated as quarterly
# earnings (Compustat quarterly item IBQ – income before extraordinary items) divided by one-quarter-lagged assets (item ATQ – total assets).
# The investor then goes long the top three deciles from each market capitalization group and goes short bottom three deciles. The strategy is
# rebalanced monthly, and stocks are equally weighted.
#
# QC implementation changes:
# - The investment universe contains 1000 most liquid stocks on NYSE and AMEX and Nasdaq with Sales greater than 10 million USD.
from AlgorithmImports import *
class ROAEffectWithinStocks(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2000, 1, 1)
self.SetCash(100000)
market:Symbol = self.AddEquity('SPY', Resolution.Daily).Symbol
self.quantile:int = 10
self.leverage:int = 5
self.sales_threshold:float = 1e7
self.exchange_codes:List[str] = ['NYS', 'NAS', 'ASE']
self.long:List[Symbol] = []
self.short:List[Symbol] = []
self.fundamental_count:int = 500
self.fundamental_sorting_key = lambda x: x.DollarVolume
self.settings.daily_precise_end_time = False
self.settings.minimum_order_margin_portfolio_percentage = 0.
self.selection_flag:bool = False
self.UniverseSettings.Resolution = Resolution.Daily
self.AddUniverse(self.FundamentalSelectionFunction)
self.Schedule.On(self.DateRules.MonthEnd(market), self.TimeRules.AfterMarketOpen(market), self.Selection)
def OnSecuritiesChanged(self, changes: SecurityChanges) -> None:
for security in changes.AddedSecurities:
security.SetFeeModel(CustomFeeModel())
security.SetLeverage(self.leverage)
def FundamentalSelectionFunction(self, fundamental: List[Fundamental]) -> List[Symbol]:
if not self.selection_flag:
return Universe.Unchanged
selected:List[Fundamental] = [x for x in fundamental if x.HasFundamentalData and x.Market == 'usa' and x.SecurityReference.ExchangeId in self.exchange_codes and \
x.ValuationRatios.SalesPerShare * x.EarningReports.DilutedAverageShares.Value > self.sales_threshold and \
not np.isnan(x.OperationRatios.ROA.ThreeMonths) and x.OperationRatios.ROA.ThreeMonths != 0]
if len(selected) > self.fundamental_count:
selected = [x for x in sorted(selected, key=self.fundamental_sorting_key, reverse=True)[:self.fundamental_count]]
# Sorting by market cap.
sorted_by_market_cap = sorted(selected, key = lambda x: x.MarketCap, reverse=True)
half:int = int(len(sorted_by_market_cap) / 2)
top_mc = [x for x in sorted_by_market_cap[:half]]
bottom_mc = [x for x in sorted_by_market_cap[half:]]
if len(top_mc) >= self.quantile and len(bottom_mc) >= self.quantile:
# Sorting by ROA.
sorted_top_by_roa:List[Fundamental] = sorted(top_mc, key = lambda x:(x.OperationRatios.ROA.Value), reverse=True)
quantile:int = int(len(sorted_top_by_roa) / self.quantile)
long_top:List[Symbol] = [x.Symbol for x in sorted_top_by_roa[:quantile*3]]
short_top:List[Symbol] = [x.Symbol for x in sorted_top_by_roa[-(quantile*3):]]
sorted_bottom_by_roa:List[Fundamental] = sorted(bottom_mc, key = lambda x:(x.OperationRatios.ROA.Value), reverse=True)
quantile = int(len(sorted_bottom_by_roa) / self.quantile)
long_bottom:List[Symbol] = [x.Symbol for x in sorted_bottom_by_roa[:quantile*3]]
short_bottom:List[Symbol] = [x.Symbol for x in sorted_bottom_by_roa[-(quantile*3):]]
self.long = long_top + long_bottom
self.short = short_top + short_bottom
return self.long + self.short
def OnData(self, data: Slice) -> None:
if not self.selection_flag:
return
self.selection_flag = False
# order execution
targets:List[PortfolioTarget] = []
for i, portfolio in enumerate([self.long, self.short]):
for symbol in portfolio:
if symbol in data and data[symbol]:
targets.append(PortfolioTarget(symbol, ((-1) ** i) / len(portfolio)))
self.SetHoldings(targets, True)
self.long.clear()
self.short.clear()
def Selection(self) -> None:
self.selection_flag = True
# Custom fee model.
class CustomFeeModel(FeeModel):
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))