| Overall Statistics |
|
Total Orders
1216
Average Win
1.29%
Average Loss
-1.14%
Compounding Annual Return
-0.631%
Drawdown
54.100%
Expectancy
0.007
Start Equity
100000
End Equity
91265.10
Net Profit
-8.735%
Sharpe Ratio
-0.099
Sortino Ratio
-0.121
Probabilistic Sharpe Ratio
0.000%
Loss Rate
53%
Win Rate
47%
Profit-Loss Ratio
1.14
Alpha
-0.011
Beta
-0.02
Annual Standard Deviation
0.124
Annual Variance
0.015
Information Ratio
-0.517
Tracking Error
0.191
Treynor Ratio
0.616
Total Fees
$1944.99
Estimated Strategy Capacity
$0
Lowest Capacity Asset
CME_RB1.QuantpediaFutures 2S
Portfolio Turnover
5.84%
|
#region imports
from AlgorithmImports import *
#endregion
class FuturesInfo():
def __init__(self, quantpedia_future:Symbol) -> None:
self.quantpedia_future:Symbol = quantpedia_future
self.near_contract:FuturesContract = None
def update_contracts(self, near_contract:FuturesContract) -> None:
self.near_contract = near_contract
def is_initialized(self) -> bool:
return self.near_contract is not None
# Custom fee model.
class CustomFeeModel():
def GetOrderFee(self, parameters):
fee = parameters.Security.Price * parameters.Order.AbsoluteQuantity * 0.00005
return OrderFee(CashAmount(fee, "USD"))
# Quantpedia data.
# NOTE: IMPORTANT: Data order must be ascending (datewise)
class QuantpediaFutures(PythonData):
_last_update_date:Dict[str, datetime.date] = {}
@staticmethod
def get_last_update_date() -> Dict[str, datetime.date]:
return QuantpediaFutures._last_update_date
def GetSource(self, config:SubscriptionDataConfig, date:datetime, isLiveMode:bool) -> SubscriptionDataSource:
return SubscriptionDataSource("data.quantpedia.com/backtesting_data/futures/{0}.csv".format(config.Symbol.Value), SubscriptionTransportMedium.RemoteFile, FileFormat.Csv)
def Reader(self, config:SubscriptionDataConfig, line:str, date:datetime, isLiveMode:bool) -> BaseData:
data = QuantpediaFutures()
data.Symbol = config.Symbol
if not line[0].isdigit(): return None
split = line.split(';')
data.Time = datetime.strptime(split[0], "%d.%m.%Y") + timedelta(days=1)
data['back_adjusted'] = float(split[1])
data['spliced'] = float(split[2])
data.Value = float(split[1])
# store last update date
if config.Symbol.Value not in QuantpediaFutures._last_update_date:
QuantpediaFutures._last_update_date[config.Symbol.Value] = datetime(1,1,1).date()
if data.Time.date() > QuantpediaFutures._last_update_date[config.Symbol.Value]:
QuantpediaFutures._last_update_date[config.Symbol.Value] = data.Time.date()
return data
# https://quantpedia.com/strategies/short-term-reversal-with-futures/
#
# The investment universe consists of 24 types of US futures contracts (4 currencies, 5 financials, 8 agricultural, 7 commodities).
# A weekly time frame is used – a Wednesday- Wednesday interval. The contract closest to expiration is used, except within the delivery
# month, in which the second-nearest contract is used. Rolling into the second nearest contract is done at the beginning of the delivery month.
# The contract is defined as the high- (low-) volume contract if the contract’s volume changes between period from t-1 to t and period from t-2
# to t-1 is above (below) the median volume change of all contracts (weekly trading volume is detrended by dividing the trading volume by its
# sample mean to make the volume measure comparable across markets). All contracts are also assigned to either high-open interest (top 50% of
# changes in open interest) or low-open interest groups (bottom 50% of changes in open interest) based on lagged changes in open interest between
# the period from t-1 to t and period from t-2 to t-1. The investor goes long (short) on futures from the high-volume, low-open interest group
# with the lowest (greatest) returns in the previous week. The weight of each contract is proportional to the difference between the return
# of the contract over the past one week and the equal-weighted average of returns on the N (number of contracts in a group) contracts during that period.
#region imports
from AlgorithmImports import *
from collections import deque
import numpy as np
import data_tools
#endregion
class ShortTermReversalwithFutures(QCAlgorithm):
def Initialize(self):
self.SetStartDate(2010, 1, 1)
self.SetCash(100000)
symbols:Dict[str, str] = {
'CME_S1': Futures.Grains.Soybeans,
'CME_W1': Futures.Grains.Wheat,
'CME_BO1': Futures.Grains.SoybeanOil,
'CME_C1': Futures.Grains.Corn,
'CME_LC1': Futures.Meats.LiveCattle,
'CME_FC1': Futures.Meats.FeederCattle,
'CME_KW2': Futures.Grains.Wheat,
'ICE_CC1': Futures.Softs.Cocoa,
'ICE_SB1': Futures.Softs.Sugar11CME,
'CME_GC1': Futures.Metals.Gold,
'CME_SI1': Futures.Metals.Silver,
'CME_PL1': Futures.Metals.Platinum,
'CME_RB1': Futures.Energies.Gasoline,
'ICE_WT1': Futures.Energies.CrudeOilWTI,
'ICE_O1': Futures.Energies.HeatingOil,
'CME_BP1': Futures.Currencies.GBP,
'CME_EC1': Futures.Currencies.EUR,
'CME_JY1': Futures.Currencies.JPY,
'CME_SF1': Futures.Currencies.CHF,
'CME_ES1': Futures.Indices.SP500EMini,
'CME_TY1': Futures.Financials.Y10TreasuryNote,
'CME_FV1': Futures.Financials.Y5TreasuryNote,
}
self.period:int = 14
self.futures_info:Dict = {}
min_expiration_days:int = 2
max_expiration_days:int = 360
# daily close, volume and open interest data
self.data:Dict = {}
self.quantile:int = 2
for qp_symbol, qc_future in symbols.items():
# QP futures
data:Security = self.AddData(data_tools.QuantpediaFutures, qp_symbol, Resolution.Daily)
data.SetFeeModel(data_tools.CustomFeeModel())
data.SetLeverage(5)
self.data[data.Symbol] = deque(maxlen=self.period)
# QC futures
future:Future = self.AddFuture(qc_future, Resolution.Daily)
future.SetFilter(timedelta(days=min_expiration_days), timedelta(days=max_expiration_days))
self.futures_info[future.Symbol.Value] = data_tools.FuturesInfo(data.Symbol)
self.recent_month:int = -1
self.Settings.MinimumOrderMarginPortfolioPercentage = 0.
def find_and_update_contracts(self, futures_chain, symbol) -> None:
near_contract:FuturesContract = None
if symbol in futures_chain:
contracts:List = [contract for contract in futures_chain[symbol] if contract.Expiry.date() > self.Time.date()]
if len(contracts) >= 2:
contracts:List = sorted(contracts, key=lambda x: x.Expiry, reverse=False)
near_contract = contracts[0]
self.futures_info[symbol].update_contracts(near_contract)
def OnData(self, data: Slice) -> None:
if data.FutureChains.Count > 0:
for symbol, futures_info in self.futures_info.items():
# check if near contract is expired or is not initialized
if not futures_info.is_initialized() or \
(futures_info.is_initialized() and futures_info.near_contract.Expiry.date() <= self.Time.date()):
self.find_and_update_contracts(data.FutureChains, symbol)
rebalance_flag:bool = False
ret_volume_oi_data:Dict[Symbol, Tuple[float]] = {}
# roll return calculation
for symbol, futures_info in self.futures_info.items():
# futures data is present in the algorithm
if futures_info.quantpedia_future in data and data[futures_info.quantpedia_future]:
# new month rebalance
if self.Time.month != self.recent_month and not self.IsWarmingUp:
self.recent_month = self.Time.month
rebalance_flag = True
if futures_info.is_initialized():
near_c:FuturesContract = futures_info.near_contract
if self.Securities.ContainsKey(near_c.Symbol):
# store daily data
price:float = data[futures_info.quantpedia_future].Value
vol:int = self.Securities[near_c.Symbol].Volume
oi:int = self.Securities[near_c.Symbol].OpenInterest
if price != 0 and vol != 0 and oi != 0:
self.data[futures_info.quantpedia_future].append((price, vol, oi))
if rebalance_flag:
if len(self.data[futures_info.quantpedia_future]) == self.data[futures_info.quantpedia_future].maxlen:
# performance
prices:List[float] = [x[0] for x in self.data[futures_info.quantpedia_future]]
half:List[float] = int(len(prices)/2)
prices:List[float] = prices[-half:]
ret:float = prices[-1] / prices[0] - 1
# volume change
volumes:List[int] = [x[1] for x in self.data[futures_info.quantpedia_future]]
volumes_t1:List[int] = volumes[-half:]
t1_vol_mean:float = np.mean(volumes_t1)
t1_vol_total:float = sum(volumes_t1) / t1_vol_mean
volumes_t2:List[int] = volumes[:half]
t2_vol_mean:float = np.mean(volumes_t2)
t2_vol_total:float = sum(volumes_t2) / t2_vol_mean
volume_weekly_diff:float = t1_vol_total - t2_vol_total
# open interest change
interests:List[int] = [x[2] for x in self.data[futures_info.quantpedia_future]]
t1_oi:List[int] = interests[-half:]
t1_oi_total:float = sum(t1_oi)
t2_oi:List[int] = interests[:half]
t2_oi_total:float = sum(t2_oi)
oi_weekly_diff:float = t1_oi_total - t2_oi_total
# store weekly diff data
ret_volume_oi_data[futures_info.quantpedia_future] = (ret, volume_weekly_diff, oi_weekly_diff)
if rebalance_flag:
weight:Dict[Symbol, float] = {}
if len(ret_volume_oi_data) > self.quantile * 2:
volume_sorted:List = sorted(ret_volume_oi_data.items(), key = lambda x: x[1][1], reverse = True)
quantile:int = int(len(volume_sorted) / self.quantile)
high_volume:List = [x for x in volume_sorted[:quantile]]
open_interest_sorted:List = sorted(ret_volume_oi_data.items(), key = lambda x: x[1][2], reverse = True)
quantile = int(len(open_interest_sorted) / self.quantile)
low_oi:List = [x for x in open_interest_sorted[-quantile:]]
filtered:List = [x for x in high_volume if x in low_oi]
filtered_by_return:List = sorted(filtered, key = lambda x : x[0], reverse = True)
quantile = int(len(filtered_by_return) / self.quantile)
long:List[Symbol] = filtered_by_return[-quantile:]
short:List[Symbol] = filtered_by_return[:quantile]
if len(long + short) >= 2:
# return weighting
diff:Dict[Symbol, float] = {}
avg_ret:float = np.average([x[1][0] for x in long + short])
for symbol, ret_volume_oi in long + short:
diff[symbol] = ret_volume_oi[0] - avg_ret
total_diff:float = sum([abs(x[1]) for x in diff.items()])
long_symbols:List[Symbol] = [x[0] for x in long]
if total_diff != 0:
for symbol, data in long + short:
if symbol in long_symbols:
weight[symbol] = diff[symbol] / total_diff
else:
weight[symbol] = - diff[symbol] / total_diff
# trade execution
invested:List[Symbol] = [x.Key for x in self.Portfolio if x.Value.Invested]
for symbol in invested:
if symbol not in weight:
self.Liquidate(symbol)
for symbol, w in weight.items():
self.SetHoldings(symbol, w)